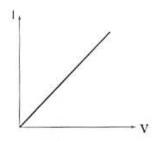
電阻器

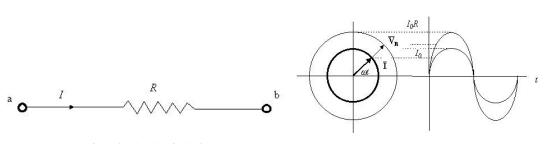


電阻器在電路中常以 R 來表示,其特性為具有阻止電流通過電子元件,電阻值越大表示對電的阻值 值越大,電阻值的單位為歐姆,以希臘字母 Ω (omega)表示。使用上如果有較大的電阻值會以 $\mathbf{k}\Omega(10^3\Omega)$ 、 $\mathbf{M}\Omega(10^6\Omega)$ 來表示。

電阻器的功能為限制電路中電流的大小及產生各種不同的電壓,提供電路中主動元件所需的偏壓。由於電阻器具有阻止電流通過的特性,會導致功率的消耗,使用時應注意電阻器的額定功率,避免因過高的功率消耗,導致電阻器的燒毀損壞。

歐姆定律:

金屬線導電時,兩端的電壓(V)與通過的電流(I)成正比,此電壓與電流的比值即為金屬線的電阻,公式為: R=V/I,一般金屬的電流電壓圖如下,斜率為電阻值。



一般金屬的電流與電壓圖

交流電流 $I = I_0 sin\omega t$ 流經一電阻R,由歐姆定律可知通過電阻ab 兩端的電壓降為 $V_{R}=IR$,得

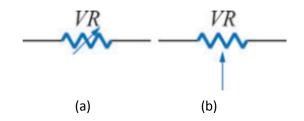
$$V_R = I_0 sin\omega t$$

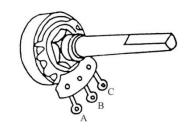
很明顯地上式中的電流與電阻是同相位的,也就是沒有相位差的意思。在下途中表示出電流與電阻的相位關係。

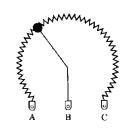
電阻在交流電路中

電阻的電流和電壓的相位圖

電阻器種類:

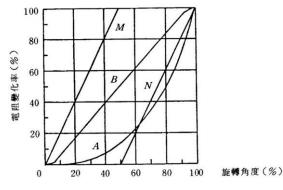

分為兩大類:(1)固定電阻器:碳膜電阻、精密電阻、金屬氧化碳膜電阻、水泥電阻


(2)可變電阻器:可變電阻、微調電阻


名稱	圖示	備註、說明
碳膜電阻 Carbon Film Resistors(碳粉類)	ally ally ally ally ally ally ally ally	品質安定價格、便宜適合大量製造且為功率較小電阻 器,再使用色碼印在上面來標示電阻值及誤差。
精密電阻(碳粉類)	And	色碼為5環,精密度較高。
金屬氧化膜電阻 Metal Oxide Film Resistors (金屬類)	Will be to the state of the sta	1、小型化使用方便,耐超負載電流而不致斷阻。 2、電氣及機械上之性能極安定,具高度信賴性。 3、不燃性絕緣塗裝,可耐溶劑清洗及適當高溫。 4、已氧化過之電阻皮膜經年變化甚少,皮膜強度特強。 5、低雜音,可製繞線電阻器不能製作之高阻值。
水泥電阻(金屬類)	3W0.5.Q.J	價格較高且為功率較大電阻,電阻值直接印在上面。
可變電阻		為手動旋轉控制調整不同電阻值。
微調電阻 Trimmer 或是 Trim-Pot		這一種可變電阻被稱為微調電阻或半固定電阻,它的體積比普通的可變電阻小,通常都直接焊接在電路板上,作為電路的調整校正用,調整好就不再動它了,所以稱為微調電阻。 $104 = 10 \times 10^4 \Omega = 100k\Omega$ $105 = 10 \times 10^5 \Omega = 1M\Omega$

可變電阻器簡介:

首先要認識可變電阻的電路符號,有兩種符號較常出現在電路裡,如下圖(a)和圖(b)


(圖2)可變電阻 ABC 腳,電路符號中,箭頭指的是第 B 腳。

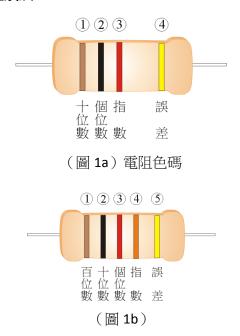
一般常用的可變電阻器如圖 2,它有一轉軸,旋轉此一轉軸可改變滑動臂的位置,來調整中間端點 (B) 至兩外端點 $(A \setminus C)$ 間之電阻值,至於可變電阻的最大電阻值,即為兩外端點 $(A \setminus C)$ 間之電阻值。

電阻特性:A型:對數型。大多用於音量控制。

B型:直線型。大多用於電路中信號強度控制。

M、N型:多被用於立體音響中左右聲道德平衡控制。

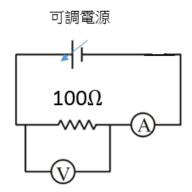
可變電阻器的電阻變化率與旋轉角度關係


補充資料:

☆選擇電阻時需注意的事項:

電子材料行所賣的電阻在規格上是有限制的,而並非無限多種可供選用,所以選購時必須在符合電路安全運用下,買到最適用的零件,購買電阻時需要考量的因素有:

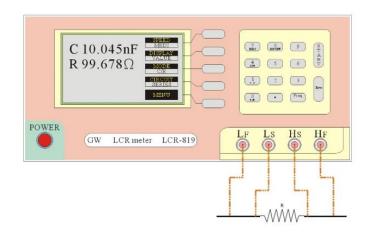
- 1、電阻值:留意將標準值與誤差計算後,是否與你所需要的電阻值吻合。
- 2、瓦特數:一般初學者忽略了電阻本身有它一定的使用範圍,當電阻通電後,會產生熱散失,並消耗功率
 - ,若消耗的功率超過電阻能夠負荷的額度,電阻就有可能被燒壞。因此,電阻額定的瓦特數必須 高於所消耗的功率,才能安全地使用。


☆電阻值讀法:

顏 色	位 數	指 數	誤 差
黑	0	10^{0}	/
棕	1	10^{1}	±1%
紅	2	10^{2}	±2%
橘	3	10^{3}	/
黄	4	10^{4}	/
綠	5	10^{5}	±0.5%
藍	6	10^{6}	$\pm 0.25\%$
紫	7	10 ⁷	±0.10%
灰	8	10^{8}	±0.05%
白	9	10^{9}	/
金	/	0.1	±5%
銀	/	0.01	±10%
無色	/	/	±20%

實驗步驟與數據

項目一:歐姆定律



- (1)將電路如上圖在麵包板上接好。
- (2)調整可調電源,使 V 電壓檔的指數由 0V 開始,每增加 0.1V,記錄三用電表電流檔 A 的電流值,一直到 2V 為止。
- (3)將可調電源的**正負極對調**,使電壓檔 V 的讀值由 0V 開始,每次增加-0.1V,記錄三用電表電流檔 A 的電流值,直到 V1=-2V 為止。
- (4)利用步驟 2×3 結果,畫出 100Ω 電阻的 I-V 關係圖。

V (伏特)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
A (安培)											
V (伏特)	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	
A (安培)											
V (伏特)	0	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8	-0.9	-1
A (安培)											
V (伏特)	-1.1	-1.2	-1.3	-1.4	-1.5	-1.6	-1.7	-1.8	-1.9	-2	
A (安培)											

項目二:歐姆定律-隨頻率改變的電阻值

Note: 電阻小於 $1k\Omega$ 用串聯 1kHz;電阻從 $1k\Omega$ 到 $10M\Omega$ 用並聯 0.25kHz;電阻大於 $10M\Omega$ 用並聯 0.03kHz

(1) 首先要了解 LCR meter 如何使用和校正!

(2) 取一 100Ω 電阻將其兩端適當連接於 LCR-819,如上圖。

(3) 設定面版: MODE 設定為 R/Q、L/R 或 C/R 兩者均可。

(4) 設定頻率:面版按【Freq】→按面版上的數字鍵→【Enter】。

(5) 按【START】,開始掃瞄。記錄數據 R。

(6) 改變 LCR-819 量測頻率,重複步驟 3-4,完成表一。

(7) 繪出 電阻-頻率圖。

頻率(KHz)	0.005	0.010	0.150	0.200	0.250	0.300	0.400
電阻 R							
頻率(KHz)	0.500	0.600	0.700	0.800	1.000	5.000	10.000
電阻 R							