
Method

Unsupervised machine learning on classification of quantum phases
Hsuan-Yu Wu1, Kwai-Kong Ng1

1Department of Applied physics, Tunghai University, Taichung, Taiwan

Abstract

• Consider training data with a window boundary. 

If the data belongs to the same phase, it cannot be 

distinguished, otherwise, it can be distinguished.

• The method of extracting data involves applying 

video compression to the imaginary time direction 

of data generated by quantum Monte Carlo (QMC)

simulations and then using a convolutional neural 

network (CNN) to perform classification. 

• We use an extended hard-core boson Hamiltonian on a 

triangular lattice, as shown below.

Results

Conclusion
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• Without the need to pre-inform relevant state 

information, our method has been proven to be able to 

roughly capture the location of the critical point of 

quantum transition.

• By introducing imaginary time, our model can better 

capture the characteristics of the critical point.

• By changing the window size, we can better determine 

the approximate range of the critical point based on the 

width of the peak.

• In the future, it may be attempted to use extrapolation 

methods to search for the critical point as L approaches 

infinity.

[1]   Xiao-Yu Dong, Frank Pollmann and Xue-Feng

Zhang, Physical Review B 99, 121104(R) (2019)

[2] Peter Broecker, Fakher F. Assaad, and Simon Trebst, 

arXiv:1707.00663v1 

[3]   Stefan Wessel and Matthias Troyer, PRL 95, 127205 (2005)

[4]   D.-R. Tan and F.-J. Jiang, Physical Review B 102, 224434 

(2020)

Recently, an algorithm [1] has been developed to apply video compression methods to the imaginary time direction of data 

generated by quantum Monte Carlo (QMC) simulations, followed by quantum phase classification tasks performed by a 

convolutional neural network (CNN). This method was originally used for supervised learning. The present study further 

extends the method to unsupervised learning, attempting to distinguish different quantum phases of unknown ground state 

phases of quantum systems and identify corresponding quantum phase transition parameters. This method can also be 

applied to some thermal phase transitions to determine the critical temperatures for different phases.

Fig1. Illustration of the operation process[2]

Fig 6. The variations in the results of (a) imaginary time layer 𝑁𝑙, and (b)

lattice size L in the results of Figure 4 (b).

• Thermal transition

Fig4. Quantum transitions from (a) supersolid to solid and (b) supersolid to

superfluid at L=18, with intervals of 0.05 and 0.004, respectively.

The position of the 

critical point as L 

approaches infinity

Fig3. Distribution of solid, supersolid,

and superfluid states at T=0.01 in

Quantum transition.[1]

Fig 8. The thermal transition of solid at

L=18, with intervals of 0.02.

Fig2. The number of kernels is 32, the number of hidden layer neurons is

512, the loss function is binary cross-entropy, the optimizer used is Adam,

and L2 regularization with a parameter of 0.08 is added.

• Quantum transition
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Fig 7. (a) The density of hard-core bosons graph along multiple phase

transition paths[3], (b) where our model predicts the results. Here, L=18

with an interval of 0.1.
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Fig 5. The variations in the results of

window sizes in the results of Figure

4 (b).
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approaches infinity
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