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Quantum Physics ( &i="P7El) ’E’" ]
Robert Eisberg ( Second edition )
CH 05 : Schroedinger’s theory of quantum mechanics

5-01 - If the wave function ¥, (x,t), W¥,(x,t),and W¥,(x,t) are three solutions to the
Schroedinger equation for a particular potential V (x,t), show that the arbitrary
linear combination W(x,t) =c,'¥,(x,t)+c,¥,(x,t)+c,'¥,(x,t) is also a soluti

to that equation. {Z,\
<> : /‘l\@
5-02 ~ At a certain instant of time, the dependence of a wave fyn posmon is as

shown in Figure 5-20. (a) If a measurement that cou ate the associated

particle in an element dx of the x axis were mad at instant, where would it

chances better that it would be found at any value of x, or are they better

that it would be found at any negatlve’ ue of ¥# (d) Make a rough sketch of the
potential V(x) which gives rise to 't e functlon (e) To which allowed

most likely be found? (b) Where would %/ kety be found? (c) Are the

energy does the wave functlon A}on ?

!%.%;/ -H\I'| ;'II: |

Figure 5- 20&5&% dependence of a wave function considered in Problem 2,
7
\{/}ve aluated at a certain instant of time.

(\/1

5-03 ~ (a) Determine the frequency v of the time-dependent part of the wave function
quoted in Example 5-3, for the lowest energy state of a simple harmonic oscillator.

(b) Use this value of v, and the de Broglie-Einstein relation E =hv, to evaluate

the total energy E of the oscillator. (c) Use this value of E to show that the
limits of the classical motion of the oscillator, found in Example 5-6, can be
Bl1E /8178 ?E;@K%%.i
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writtenas X=+————.
(Cm)

T _IET .
<##> @ (a) The time-dependent part of the wavefunction is e 2 ‘/; —e 7 =g "™

Therefore, i\/gzzm/ — V:i C
2\'m m

Az
) 1 C
(b) Since E=hv=2z%v, E :—ﬁ\ﬁ
2 \'m {Z,\
. 1 A
¢) The limiting x can be found from =Cx*=E |
() g 5 /‘J\

X= i(%)“2 =472 (Cm) ™2 . 4?/(/ @

VAN
5-04 -~ By evaluating the classical normalization integral%?mlp}e 5-6, determine the
value of the constant B? which satisfi e” requirement that the total
probability of finding the particle in the cl% cillator somewhere between
its limits of motion must equal one. ’ f

b

<##> : According to Example 5-6, t&%—%alifing integral is
@ 2E
1=232\E j = v
C 2E zz 2E
I c
Y
5-05 ‘@{;he) results of Example 5-5, 5-6, and 5-7 to evaluate the probability of finding
-4Y icle, in the lowest energy state of a quantum mechanical simple harmonic
Z%,, _goscillator, within the limits of the classical motion. (Hint : (i) The classical limits
N\ of motion are expressed in a convenient form in the statement of Problem 3c. (ii)
The definite integral that will be obtained can be expressed as a normal
probability integral, or an error function . It can then be evaluated immediately by
consulting mathematical handbooks which tabulate these quantities. Or, the
integral can easily be evaluated by expanding the exponential as an inifinite series

before integrating, and then integrating the first few terms in the series.
Alternatively, the definite integral can be evaluated by plotting the integrand on

e 6K 4
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graph paper, and counting squares to find the area enclosed between the integrand,
the axis, and the limits.)

<##> : Problem 5-3(c) Provides the limits on x; the wavefunction is

_ (Cm)1/8 7@)(2

- (7[2)1/4 e 2 e_iM
Hence, the desired probability is given by Q-
A2 /‘\
1/4 (Cm)™* _Jem / /|
Prob.=2 (Cm) j e 7 dx /‘\@

(z2)"*
If U:Mx 6%

él/ 2

N,
7w /"7\
Prob.=2[ —2—e 2du=2(0.42) =084 ..... ## G

! N2 \

%,

| 7
5-06 ~ At sufficiently low temperature, an l% a vibrating diatomic molecule is a
simple harmonic oscillator in 4 est‘energy state because it is bound to the
other atom by a linear regfori rce. (The restoring force is linear, at least

approximately, because lecular vibrations are very small.) The force
Ve

constant C for a typjcgl ndjeelle has a value of about C ~10°nt/m. The mass of

the atom is abou “kg. (a) Use these numbers to evaluate the limits of

the cIassica*_ I om the formula quoted in Problem 3c. (b) Compare the
) 4
distance b %%these limits to the dimensions of a typical diatomic molecule,

and ent’on what this comparison implies concerning the behavior of such a
molef}%ﬂ/ery low temperatures.

A7~
<ﬁz;)§'(‘/3\’

5-07~ (a) Use the particle in a box wave function verified in Example 5-9, with the value
of A determined in Example 5-10, to calculate the probability that the particle
associated with the wave function would be found in a measurement within a

distance of % from the right-hand end of the box of length a. The particle is in
its lowest energy state. (b) Compare with the probability that would be predicted

R CRAEY
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classically from a very simple calculation related to the one in Example 5-6.

2 X
<if#> : (a) Since ¥ =(=)"?cos—e *
a a

N

f
Prob.:gj oS (—)dx_gj cos’ udu=1—£=0.1955
as T 3 4rn

Independent of E. @/( e

a/3_1 2N
(b) Classically Prob.=—-===>=0.3333...... HH /\J
a 3 “l X&\
AN/
/

5-08 ~ Use the results Example 5-9 to estimate the total ener% utron of mass
about 107*'kg which is assumed to move freely roJﬁ)\ nucleus of linear
dimensions of about 10™m, but which is stri€tfyconfined to the nucleus.

Express the estimate in MeV. It will be clos%) acttfal energy of a neutron in
the lowest energy state of a typical nucleus.

e . ’ e
<EJZLL> : Lk
'%.*'/!/ ‘

5-09 - (a) Following the proce/@) xample 5-9, verify that wave function

_IEt

X = a a
sm—e X< +—
%}9" x<—% or x>+2

2

IS a WW to the schroedinger equation in the region —%<x<+§ for a
“@(gle hich moves freely through the region but which is strictly confined to it.
- Iso determine the value of the total energy E of the particle in this first

‘;’{X . .
/% o o EXcited state of the system, and compare with the total energy of the ground state
N\ found in Example 5-9. (c) Plot the space dependence of this wave function.
Compare with the ground state wave function of Figure 5-7, and give a qualitative

argument relating the difference in the two wave functions to the difference in the
total energies of the two states.

<##> : (a) (b) Let V =0 in the region in which the particle is confined, so that

BAE /BT E ARy
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2 2
Schroedinger’s equation becomes _A0 \f i/%a—ql, with
2m oOx ot
iEt
Y = Asin @e 4
a
Putting these into Schroedinger’s equation gives
2 2 £2
? 4” /?(——\P) E¥; E=E =217
ma

o a Q

In the ground state, E=E,=———,sothat E=4E,.
2ma
(c) The space parts of the wave functions are /‘)\

X
w, = ACOS—
a

Y, = Asm@

a >

=

w, oscillates more rapidly, since with ’E s
E >E,,

vy, <A,

d Vil _
dx?

2m ELT N d?y,
52 171 dX2
“‘-

formost x...... #H ; %

:\I

5-10 ~ (a) Normalize the, \@ function of Problem 9, by adjusting the value of the
N A

multlpllcatly'_ so that the total probability of finding the associated
particle so re in the region of length a equals one. (b) Compare with the
valueq0f A dbtained in Example 5-10 by normalizing the ground state wave
func%’scuss the comparison.

/?(’ a

<P_>\E6?To normalize the wavefunction, evaluate 1= J‘P Ydx (W =0 outside this
SO\

pN

4({}'_‘" 2
N region ).
—Et

With ¥ = A5|n2—e 4 this become
a

5 .
1= 2A2J.sin2 27X 4 :ij'sin2 udu=2p2%
0 a T T 2

BOE /17 E AL
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a

(b) This equals the value of A for the ground state wavefunction and, in fact, the
normalization constant of all the excited states equals this also. Since all of
the space wave functions are simple sines or cosines, this equality is

understandable....... #t
22

5-11 ~ Calculate the expectation value of x, and the expectation value of 4} or%j/
particle associated with the wave function of Problem 10.

<##> : The wavefunction is :\Esin 27zxe -

a a \W
2 \')‘\
- 2 ., 27X
And therefore x:—jxsm ———dx=0...... #H#
a-, a

As for x? 2 %,

x_:_jx sin® 2% g~ L Juesi
g A@ﬂ{

5-12 ~ Calculate the expect |o@(/ad/e of p, and the expectation value of p?, for the

=0.07067a°...... H

particle associate e e wave function of Problem 10.
N
A ;
<##> : The linea ntum operator is —i/?a— and therefore
X

.‘/@C Ism%[ I/?—( |n—)]d :—M?ﬁ]isinucosudu=0 ...... #H#
0

a

/,
Zéa 7 Slmllarly

a

== j sin 27X [| 2/§2 o (sm X)]dx = —87ri2(z)z‘|‘sin2 udu = 47z2(é)2 = (D)2
a a’ a a

2

Be6E /83175 r'@kg_
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product of the uncertainties in position and momentum of the particle in the first
excited state of the system being considered. (b) Compare with the uncertainty
product when the particle is in the lowest energy state of the system, obtained in
Example 5-10, Explain why the uncertainty products differ.

<iE> : Let Ax:\/?; Ap:\/?.
(a) Problem 5-11 and 5-12 yield Ax=na, n? —% %— 212) ;. Ap :D Q
vl _g 34 /“\@
2
(b) In the ground state, AxAp = (0. 18a)(—) 1. 13— &y
In the first excited state the undertainties in position afmmentum both
increase over the ground state values, due to the {her energy of the

particle.
//‘,’\’

Hence, AXAp= (na)(—) 47zn(—) (— -2)

5-14 ~ (a) Calculate the expectation values J %ﬁnetlc energy and potential energy for
a particle in the lowest energ@& of‘a simple harmonic oscillator, using the
wave function of Example %ompare with the time-averaged kinetic and
potential energies for a | simple harmonic oscillator of the same total
energy. 'yfa

N\, g J(Cm)X* et
<##> : The normalj ed\(mnction IS ‘P:%e 27 e 7 with E:li
“'. (”5)1/4 2 C
2
@) %ﬂb@ kinetic energy is Zp_m the corresponding operator is

‘//\/ ﬁz 62
A YA * ¢

‘(‘/“ 2m ox?

A

Y e 1/4 2 4o 2 x/Cm 2

\ Therefore, T = Cmy_~ (—2) - Cm X 6 —e 2 dx
( 5)1/2

f:ﬁ(i)IIZI(l_UZ)e—uzdu — ( )1/2
m’

Similarly for the potential energy U :%sz

BTE/817TE Thk %
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1/4 +o0 _y(Cm)¥?
U= ((C;]))m %I x’e 7 dx= /%( )1’2_|.u2 eV
T —o0

(b) This same relation, U =T = % E , is obeyed by the classical oscillator

also......## @{%"

4

4\4\

5-15 ~ In calculating the expectation value of the product of position ti mom ntum,
an ambiguity arises because it is not approachwhich of the two

Xp = ]:\y*x(—iﬁ %)‘de %\}ﬁ\
PX = T ‘P*(iﬁg%y

should be used. (In the first e reSS| operates on ¥; in the second it
1
operates on x¥.) (a) Sho %her IS acceptable because both violate the

obvious requirement thét« should be real since it is measurable. (b) Then

show that the exp \ﬂh
X 0
T - x( 17 )+( i17—)X
‘?N OX > OX ]\de

IS ac%ﬂﬁ because it does satisfy this requirement. (Hint : (i) A quantity is real
“@(@qu Is its own complex conjugate. (ii) Try integrating by part. (iii) In any
tic case the wave function will always vanish at x =+o0.)

sOA
{‘%

e

5-16 ~ Show by direct substitution into the Schroedinger equation that the wave function
iEt

Y(x,t)=w(x)e 7 satisfies that equation if the eigenfunction w(x) satisfies the

time-independent Schroedinger equation for a potential V (x).

BOR/ BITR %ok B
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<EJ]4;£> :

5-17 ~ (a) Write the classical wave equation for a string of density per unit length which
varies with x. (b) Then separate it into two ordinary differential equations, and
show that the equation in x is very analogous to the time-independe
Schroedinger equation. Q

<EJ]4;£> : /‘l\@
L@U
7 /
5-18 ~ By using an extension of the procedure leading to (5-31)\0' the Schroedinger

equation for a particle of mass m moving in th ons (described by

ree_ dia
rectangular coordinates x,y,z) %

. %
<if> @/
7!/51'. 4

5-19 ~ (a) Separate the Schroedingeg 'on‘} Problem 18, for a time-independent
potential, into a time- indepgnd hroedinger equation and an equation for the
time dependence of th function. (b) Compare to the corresponding
one-dimensional equa 'or’ry(ﬁ’-én and (5-38), and explain the similarities and the

differences. \/
YIN

<EJ]4;£> : %‘%;/
"

5-2Q\@§;p!rate the time-independent Schroedinger equation of Problem 19 into three
"’@?e!independent Schroedinger equations, one in each of the coordinates. (b)
a_. ~Compare them with (5-37). (c) Explain clearly what must be assumed about the
. form of the potential energy in order to make the separation possible, and what
the physical significance of this assumption is. (d) Give an example of a system

that would have such a potential.

)
4

AR

<EJ]4;£> :

FomEE CRAEY
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5-21 ~ Starting with the relativistic expression for the energy, formulate a Schroedinger
equation for photons, and solve it by separation of variables, assuming V =0.

<##> : With V =0, the energy of the photon is E = pc.
Replacing the energy E and momentum p by their operators gives

iﬁa—q} = —i/%ca—LP .

ot OX
Now set W(x,t) =w(x)T(t) and divide the equation by y to get Q}
i,;ld_T:_i;;cld_W: /<‘l\

T dt w dx “| @
Where K is independent of x and t. Write K =k/c and the two@l’ation

—iket

/
directly above become c;—T =—ikcT = T e &y/
t \.\ﬁ\
dy \Nl\

— =iky = y=¢e% %
dx
Hence, for the photon, W oc e . ##@/
e 7
5-22 ~ Consider a particle moving unaer th%luence of the potential V(x)=C|x|,
v
h

where C is a constant, whic strated in Figure 5-21. (a) Use qualitative
arguments, very similar/&%p of Example 5-12, to make a sketch of the first
eigenfunction and of 'yr%}zigenfunction for system. (b) Sketch both of the
corresponding pr density function. (c) Then use the classical mechanics
to calculat%_+ t anner of Example 5-6, the probability density function
predicted theory. (d) Plot the classical probability density functions with
the gyagtum echanical probability density functions, and discuss briefly their
compdrison.

)

Figure 5-21 A potential function considered in Problem 22.

SR CRAEY
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<EJ]4;£> :

5-23 ~ Consider a particle moving in the potential V(x) plotted in figure 5-22. For the
following ranges of the total energy E, state whether there are any allowed values
of E and if so, whether they are discretely separated or continuously distributed.

(@ E<V,, (b) V,<E<V,,(c) V,<E<V,,d) V,<E<V,,(e) V,<E.

2N
/y)//
\:W
Figure 5-22 A potential function considered in Problem 23. \Nl\

/
<EJ]4;£> : \

%,

k4

5-24 ~ Consider a particle moving in the po[%(x) illustrated in Figure 5-23, that

has a rectangular region of de and width a, in which the particle can be

bound. These parameters r to the mass m of the particle in such a way
: vV,

that the lowest aIIowedk;n E, is found at an energy about " above the

“bottom.” Use q%e arguments to sketch the approximant shape of the

correspondipiel ction w,(x).
: / '.'{_'l.l

R

Figure 5-23 A potential function considered in problem24.

<EJ]4;£> :

B8/ 5178

@) Tk %
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5-25 ~ Suppose the bottom of the potential function of Problem 24 is changed by adding
a bump in the center of height about \1/_8 and width %. That is, suppose the

potential now looks like the illustration of Figure 5-24. Consider qualitatively
what will happen to the curvature of the eigenfunction in the region of the bump,

and how this will, in turn, affect the problem of obtaining an acceptable behavi

of the eigenfunction in the region outside the binding region. From @)%WJ,
consideration predict, qualitatively, what the bump will do to thevalde.oft

lowest allowed energy E,. 41\@\

D = ,é;&, X/
L
= A

ka4 =

Problem 25.

v
<ig>: E will increase @"{
&

7 L8,
Figure 5-24 A rectangular bump added to th %m oﬂfﬁe potential of Figure 5-23; for
)

Ve
2/

5-26 ~ Because the burﬂp\@oﬁlem 25 is small, a good approximation to the lowest
allowed en }Nﬁs particle in the presence of the bump can be obtained by
taking it ai%m of the energy in the absence of the bump plus the expectation
valueq 0f the “extra potential energy represented by the bump, taking the V¥
correspQnding to no bump to calculate the expectation value. Using this point of

J@(f,p edict whether a bump of the same “size”, but located at the edge of the
- K¢ as in Figure 5-25, would have a large, smaller, or equal effect on the
Z%a_ o lowest allowed energy of the particle, compared to the effect of a centered bump.
\ (Hint : Make a rough sketch of the product of ¥"¥ and the potential energy
function that describes the centered bump. Then consider qualitatively the effect

of moving the bump to the edge on the integral of this product.)

HRE s CRAEY
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Vo/10

I X

- -

ald

Figure 5-25 The same rectangular bump as in Figure 5-24, but moved to the edge o@ -

potential ; for Problem 26. /‘l\
"1\@\

/y)//
5-27 ~ By substitution into the time-independent Schroedinger Yﬁ\)n for the potential
dt;rl

<EJZLL> : smaller

illustrated in Figure 5-23, show that in the region t ght of the binging

region the eigenfunction fas the mathematlc

_\/Zm(VO )X a
w(x)=Ae 7 JX>+—,

2 %
<##> : Schroedinger’s equation is z%—%ﬂ
d? v, 2m %
E-V
v T BTV @/
In the region in questin/,"y

2\//0 =constant, E <V,, so that
\(
q° = (Vo

0 A o
Hence, + Be™, is the general solution. However, y(x=wx)=0,

requiging B =0
- }éf;'{s the wavefunction....... #H
/\/

Zi@gﬁ‘; Using the probability density corresponding to the eigenfunction of Problem 27,
T\ write an expression to estimate the distance D outside the binding region of the
potential within which there would be an appreciable probability of finding the
particle. (Hint : Take D to extend to the point at which W¥™¥ is smaller than its
value at the edge of the binding region by a factor of e™. This e criterion is

similar to one often used in the study of electrical circuits.)

—20X

<##> : Since y is real, the probability density Pis P =y 'y =y* = A%

#1383 /83173 "‘F;@k%%.i
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Recalling that x is measured from the center of the binding region, the suggested

1 1
-2q(=a+D -2q(=a
q(2 ) _ q(2 )

criterion for D gives A’ e 'A%
eqa—ZqD — e—qa—l

1 7
D = — =
29 2[2m(v, - E)"2

A Pw
~,
5-29 ~ The potential illustrated in Figure 5-23 gives a good description of the fﬁﬂSes éj/

/)
acting on an electron moving through a block of metal. The energy dif@@

V, — E, for the highest energy electron, is the work function for t tal.
Typically, V,—E =5eV . (a) Use this value to estimate the dist f Problem

28. (b) Comment on the results of the estimate. \,
Yy

I\
<EJZLL> : From Problem 28 %
//. 0

D= ' = - AL “_04A
2[2m(V, - E)J*  2[2(9.1x107*")(5)(L: ?]ﬂz

0.4A
ILK.

A
5-30 ~ Consider the eigenfunctio ill‘u%%/ﬁél in the top part of Figure 5-26. (a) Which of
the three potentials illus a}ﬁy; the bottom part of the figure could lead to such
an eigenfunction? Give W tative arguments to justify your answer. (b) The
eigenfunction sh%ot the one corresponding to the lowest allowed energy
for the pote gs h the form of the eigenfunction which does correspond to
the lowest i ed energy E;. (c) Indicate on another sketch the range of

energi hefe you would expect discretely separated allowed energy states, and
the rahge Of energies where you would expect the allowed energies to be
- ipudusly distributed. (d) Sketch the form of the eigenfunction which
‘(Ozésponds to the second allowed energy E,. (e) To which energy level does the

/ _ : N
Zéa_ o cigenfunction presented in Figure 5-26 correspond?

7\

B14E | R17E ) Tk s
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X

the potential ener }ion considered in Problem30.

)y g
<EJZLA> : \\'(“l\iﬁ
'%%- 7

«[é' I"
Ao

5-31 ~ Esti'ga%we lowest energy level for a one-dimensional infinite square well of

A
Figure 5-26 An eigenfunction (to%cu‘rg/ d three possible forms (bottom curves) of

widt oritaining a cosine bump. That is the potential V is

/A4
“VM’"' V=V, cos X 8 v« 2
\ a 2 2
;{7 a a
oy g V =inf init X<—= OF X>+—
67\ d 2 2
252
where V, << S e ##
ma
<EJZLA> :
£21553 /1 3173

ORIy

Tunghai University




A8 3 419 B3R CHO5
5-32 ~ Using the first two normalized wave function ¥,(x,t) and Y¥,(x,t) for a

particle moving freely in a region of length a, but strictly confined to that region,
construct the linear combination W(x,t) =c,\¥,(x,t)+c,'¥,(x,t). Then derive a
relation involving the adjustable constants c, and c, which, when satisfied,

will ensure that W(x,t) is also normalized. The normalized ‘¥,(x,t) and
W, (x,t) are obtained in Example 5-10 and Problem 10.

<FE> Q{%‘“

A/\
)

5-33 ~ (a) Using the normalized “mixed” wave function of Problem alcu te the

expectation value of the total energy E of the particle in terﬁ?f}(e energies

E, and E, of the two states and the values c, {’ f the mixing

parameters. (b) Interpret carefully the meaning of y ézs

2
<##> : (a) The total energy is E :Zp_m+v . But &in the region of motion, so that

E_ p2 52 62 /

2m 2m Ox?

202
Hence, E=— om L(c ‘Pl’g?ﬂz 6x2 — (¢, +c,¥,)dx.
A,gg,
62‘1’ Vi3 'Y%‘PZ 27r
W ) \Ilz |
N\ a
'

Also, Ig% 5-32, [W;W,dx=[¥;¥,dx=0 and therefore

Y/ - 2r -
§§1{(E)chcl J‘{’l\Pldx + (?)2 Czczj‘{]z\yzdx} )
/e

2 22 2 _2
A7 S Ry
\,‘//“"E_clc12 +C,C,

ma? > ma?

A _
T;‘ E =cC E, +C,C,E,

(b) Since cc, +c,c, =1, E=(1-c,C,)E +C,CE, =E +¢,c,(E,—E,)

Wwith 0<c,c, <1, thismeansthat E <E<E,.

Hence, if the particle can be found either in level 1 or 2, making transitions
between them, its average energy, as would be expected, lies between the

163 / 3173 "‘F;@k%%.i
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energies of the two levels...... ##

5-34 - If the particle described by the wave function of Problem 32 is a proton moving in
a nucleus, it will give rise to a charge distribution which oscillates in time at the
same frequency as the oscillations of its probability density. (a) Evaluate this

frequency for values of E, and E, corresponding to a proton mass of 107

and a nuclear dimension of 107 m. (b) Also evaluate the frequency and/ﬁ]yr

of the photon that would be emitted by oscillating charge distribution as,

proton drops from the excited state to the ground state. (c) In wha@’ion of the
V4

electromagnetic spectrum is such a proton? &‘y
\W
\')‘\ —i(E,-Et

<##> : (a) The probability density W™V has atime depe@e{ce of e 7 ,and

therefore the frequency is v = E,—& ,@
%,
R ht 1y ,(§.626?6-34)*2
2ma’ 8ma’ 8(1.67 W)(lo-“)z(l.ﬁoleo-”)
E,=2.05IMeV ; E,=4 04MeV .

8.204-2.051
Hence, v =
4.136

(b) The frequency of e'y‘\% is the same as in (a). The photon’s energy is
hy =8.204 = 6.153MeV

But, E =

2Y/483x10% Hz .

BI7TE I R17TE ) Tk s
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