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Quantum Physics（量子物理）習題 
Robert Eisberg（Second edition） 

CH 05：Schroedinger’s theory of quantum mechanics 
 

5-01、If the wave function 1( , )x tΨ , 2 ( , )x tΨ , and 3( , )x tΨ  are three solutions to the 
Schroedinger equation for a particular potential ( , )V x t , show that the arbitrary 
linear combination 1 1 2 2 3 3( , ) ( , ) ( , ) ( , )x t c x t c x t c x tΨ = Ψ + Ψ + Ψ  is also a solution 
to that equation. 

 
<解>： 
 

 
5-02、At a certain instant of time, the dependence of a wave function on position is as 

shown in Figure 5-20. (a) If a measurement that could locate the associated 
particle in an element dx  of the x axis were made at that instant, where would it 
most likely be found? (b) Where would it least likely be found? (c) Are the 
chances better that it would be found at any positive value of x, or are they better 
that it would be found at any negative value of x? (d) Make a rough sketch of the 
potential ( )V x  which gives rise to the wave function. (e) To which allowed 
energy does the wave function correspond? 

 
Figure 5-20 The space dependence of a wave function considered in Problem 2, 

evaluated at a certain instant of time. 
 
<解>： 
 

 
5-03、(a) Determine the frequency ν  of the time-dependent part of the wave function 

quoted in Example 5-3, for the lowest energy state of a simple harmonic oscillator. 
(b) Use this value of ν , and the de Broglie-Einstein relation E hν= , to evaluate 
the total energy E  of the oscillator. (c) Use this value of E  to show that the 
limits of the classical motion of the oscillator, found in Example 5-6, can be 
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written as 
1/ 2

1/ 4( )
x

Cm
= ± . 

<解>：(a) The time-dependent part of the wavefunction is 
1

22
C iETit i tme e e πν− − −= =  

         Therefore, 1 2
2

C
m

πν=  ⇒ 1
4

C
m

ν
π

=  

      (b) Since 2E hν π ν= = , 1
2

CE
m

=  

      (c) The limiting x can be found from 21
2

Cx E=  

               1/ 2 1/ 2 1/ 22( ) ( )Ex Cm
C

−= ± = ± ……## 

 
 

5-04、By evaluating the classical normalization integral in Example 5-6, determine the 
value of the constant 2B  which satisfies the requirement that the total 
probability of finding the particle in the classical oscillator somewhere between 
its limits of motion must equal one. 

 
<解>：According to Example 5-6, the normalizing integral is  

      

2
2

2 2 1
0

20

1 2 2 sin
2 2

E
EC

Cm dx m xB B
C CE Ex

C C

−= =
−

∫  

      21 mB
C

π=  ⇒ 2 1/ 2
2( )CB

mπ
= ……## 

 
 

5-05、Use the results of Example 5-5, 5-6, and 5-7 to evaluate the probability of finding 
a particle, in the lowest energy state of a quantum mechanical simple harmonic 
oscillator, within the limits of the classical motion. (Hint : (i) The classical limits 
of motion are expressed in a convenient form in the statement of Problem 3c. (ii) 
The definite integral that will be obtained can be expressed as a normal 
probability integral, or an error function . It can then be evaluated immediately by 
consulting mathematical handbooks which tabulate these quantities. Or, the 
integral can easily be evaluated by expanding the exponential as an inifinite series 
before integrating, and then integrating the first few terms in the series. 
Alternatively, the definite integral can be evaluated by plotting the integrand on 
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graph paper, and counting squares to find the area enclosed between the integrand, 
the axis, and the limits.) 

 
<解>：Problem 5-3(c) Provides the limits on x; the wavefunction is 

21/8
2

1/ 4

( )
( )

Cm x i tCm e e ω

π
− −Ψ =  

      Hence, the desired probability is given by 
1/ 2

1/ 4
2( )1/ 4

1/ 2
0

( ). 2
( )

Cm Cm xCmProb e dx
π

−

−
= ∫  

      If 
1/ 4

1/ 2

(4 )Cmu x=  

      
22

2

0

1. 2 2(0.42) 0.84
2

u

Prob e du
π

−
= = =∫ ……## 

 
 

5-06、At sufficiently low temperature, an atom of a vibrating diatomic molecule is a 
simple harmonic oscillator in its lowest energy state because it is bound to the 
other atom by a linear restoring force. (The restoring force is linear, at least 
approximately, because the molecular vibrations are very small.) The force 
constant C for a typical molecule has a value of about 310 /∼C nt m . The mass of 
the atom is about 2610∼m kg− . (a) Use these numbers to evaluate the limits of 
the classical motion from the formula quoted in Problem 3c. (b) Compare the 
distance between these limits to the dimensions of a typical diatomic molecule, 
and comment on what this comparison implies concerning the behavior of such a 
molecule at very low temperatures. 

 
<解>： 
 

 
5-07、(a) Use the particle in a box wave function verified in Example 5-9, with the value 

of A determined in Example 5-10, to calculate the probability that the particle 
associated with the wave function would be found in a measurement within a 

distance of 
3
a  from the right-hand end of the box of length a. The particle is in 

its lowest energy state. (b) Compare with the probability that would be predicted 
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classically from a very simple calculation related to the one in Example 5-6. 
 

<解>：(a) Since 1/ 22( ) cos
iEtx e

a a
π −

Ψ =  

         
2 2

2 2

6 6

2 2 1 3. cos ( ) cos 0.1955
3 4

a

a

xProb dx udu
a a

π

π

π
π π

= = = − =∫ ∫  

         Independent of E. 

      (b) Classically 3 1. 0.3333
3

aProb
a

= = = ……## 

 
 

5-08、Use the results Example 5-9 to estimate the total energy of a neutron of mass 
about 2710 kg−  which is assumed to move freely through a nucleus of linear 
dimensions of about 1410 m− , but which is strictly confined to the nucleus. 
Express the estimate in MeV. It will be close to the actual energy of a neutron in 
the lowest energy state of a typical nucleus. 

 
<解>： 
 

 
5-09、(a) Following the procedure of Example 5-9, verify that wave function 

2sin
2 2( , )

0
2 2

    

iEtx a aA e x
ax t

a ax or x

π −
− < < +

Ψ =
< − > +

 

is a solution to the schroedinger equation in the region 
2 2
a ax− < < +  for a 

particle which moves freely through the region but which is strictly confined to it. 
(b) Also determine the value of the total energy E of the particle in this first 
excited state of the system, and compare with the total energy of the ground state 
found in Example 5-9. (c) Plot the space dependence of this wave function. 
Compare with the ground state wave function of Figure 5-7, and give a qualitative 
argument relating the difference in the two wave functions to the difference in the 
total energies of the two states. 

 
<解>：(a) (b) Let 0V =  in the region in which the particle is confined, so that 
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Schroedinger’s equation becomes 
2 2

22
i

m x t
∂ Ψ ∂Ψ

− =
∂ ∂

, with 

2sin
iEtxA e

a
π −

Ψ = . 

         Putting these into Schroedinger’s equation gives 

         
2 2

2

4( )( ) ( )
2

iEi E
m a

π
− − Ψ = − Ψ = Ψ ; 

2 2

1 2

2E E
ma
π

= = . 

         In the ground state, 
2 2

0 22
E E

ma
π

= = , so that 04E E= . 

      (c) The space parts of the wave functions are  

         0 cos xA
a
πψ =  

1
2sin xA

a
πψ =  

1ψ  oscillates more rapidly, since with 

1 0E E> ,  

1 0, Aψ ψ ≤ , 

22
01

1 1 0 02 2 2 2

2 2dd m mE E
dx dx

ψψ ψ ψ− = > − =

for most x ……## 
 

 
5-10、(a) Normalize the wave function of Problem 9, by adjusting the value of the 

multiplicative constant A so that the total probability of finding the associated 
particle somewhere in the region of length a equals one. (b) Compare with the 
value of A obtained in Example 5-10 by normalizing the ground state wave 
function. Discuss the comparison. 

<解>：(a) To normalize the wavefunction, evaluate 
2

2

1

a

a

dx∗

−

= Ψ Ψ∫  ( 0Ψ =  outside this 

region ). 

With 2sin
EtxA e

a
π −

−
Ψ = , this become 

2
2 2 2 2

0 0

21 2 sin sin
2

a

x a aA dx udu A
a

ππ π
π π

= = =∫ ∫  
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2A
a

= ……## 

      (b) This equals the value of A for the ground state wavefunction and, in fact, the 
normalization constant of all the excited states equals this also. Since all of 
the space wave functions are simple sines or cosines, this equality is 
understandable…….## 

 
 

5-11、Calculate the expectation value of x, and the expectation value of 2x , for the 
particle associated with the wave function of Problem 10. 

 

<解>：The wavefunction is 2 2sin
iEtx e

a a
πψ

−
=  

      And therefore 
2

2

2

2 2sin 0

a

a

xx x dx
a a

π
+

−

= =∫ ……## 

      As for 2x :  

22
2 2 2 2 2 2 2

3 2
0

2

2 2 1 1 1sin sin ( ) 0.07067
2 4 3 2

a

a

x ax x dx u udu a a
a a

ππ
π π

+

−

= = = − =∫ ∫ ……## 

 
 

5-12、Calculate the expectation value of p, and the expectation value of 2p , for the 
particle associated with the wave function of Problem 10. 

 

<解>：The linear momentum operator is i
x
∂

−
∂

 and therefore 

      
2

0
2

2 2 2 4sin [ (sin )] sin cos 0

a

a

x x ip i dx u udu
a a x a a

ππ π
+

−

∂
= − = − =

∂∫ ∫ ……## 

      Similarly,  

22
2 2 2 2 2 2 2 2 2

2
0

2

2 2 2sin [ (sin )] 8 ( ) sin 4 ( ) ( )

a

a

x x hp i dx i udu
a a x a a a a

ππ π π π
+

−

∂
= = − = =

∂∫ ∫

      ……## 
 

 
5-13、(a) Use quantities calculated in the preceding two problems to calculate the 
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product of the uncertainties in position and momentum of the particle in the first 
excited state of the system being considered. (b) Compare with the uncertainty 
product when the particle is in the lowest energy state of the system, obtained in 
Example 5-10, Explain why the uncertainty products differ. 

 

<解>：Let 2x x∆ = ; 2p p∆ = . 

(a) Problem 5-11 and 5-12 yield x na∆ = , 2
2

1 1 1( )
4 3 2

n
π

= − ; hp
a

∆ = . 

   Hence, 2 1/ 24( )( ) 4 ( ) ( 2) 3.34
2 3 2 2

hx p na n
a

π π∆ ∆ = = = − = . 

(b) In the ground state, (0.18 )( ) 1.13
2 2
hx p a
a

∆ ∆ = = . 

   In the first excited state the undertainties in position and momentum both 
increase over the ground state values, due to the higher energy of the 
particle. 

 
 

5-14、(a) Calculate the expectation values of the kinetic energy and potential energy for 
a particle in the lowest energy state of a simple harmonic oscillator, using the 
wave function of Example 5-7. (b) Compare with the time-averaged kinetic and 
potential energies for a classical simple harmonic oscillator of the same total 
energy. 

<解>：The normalized wavefunction is 
2( )1/8

2
1/ 4

( )
( )

Cm x iEtCm e e
π

− −
Ψ =  with 1

2 ( )
E C

m

=  

(a) Since the kinetic energy is 
2

2
p
m

 the corresponding operator is 

2 2

22
T

m x
∂

= −
∂

 

         Therefore, 
21/ 4 2 2

2 2
1/ 2 2

( ) ( )
( ) 2 2

Cm xCm CmT x e dx
m xπ

+∞
−

−∞

∂
= − −

∂∫  

                  
21/ 2 2 1/ 2

0

1( ) (1 ) ( )
4 2

uC CT u e du E
m mπ

∞
−= − = =∫  

         Similarly for the potential energy 21
2

U Cx=  
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2

2
( )1/ 4

2 1/ 2 2
1/ 2

0

( ) ( )
( ) 2

Cm x
uCm C CU x e dx u e du

mπ π

+∞ ∞
− −

−∞

= =∫ ∫ , 

         
1/ 2

1/ 2 1( )
4 2

CU T E
m

π
π

= = =  

      (b) This same relation, 1
2

U T E= = , is obeyed by the classical oscillator 

also……## 
 

 
5-15、In calculating the expectation value of the product of position times momentum, 

an ambiguity arises because it is not approachwhich of the two expressions 

* ( )xp x i dx
x

∞

−∞

∂
= Ψ − Ψ

∂∫  

*( )px i x dx
x

∞

−∞

∂
= Ψ − Ψ

∂∫  

should be used. (In the first expression 
x
∂
∂

 operates on Ψ ; in the second it 

operates on xΨ .) (a) Show that neither is acceptable because both violate the 

obvious requirement that xp  should be real since it is measurable. (b) Then 

show that the expression 

*
( ) ( )

[ ]
2

x i i x
x xxp dx

∞

−∞

∂ ∂
− + −

∂ ∂= Ψ Ψ∫  

     is acceptable because it does satisfy this requirement. (Hint : (i) A quantity is real 
if it equals its own complex conjugate. (ii) Try integrating by part. (iii) In any 
realistic case the wave function will always vanish at x = ±∞ .) 

 
<解>： 
 

 
5-16、Show by direct substitution into the Schroedinger equation that the wave function 

( , ) ( )
iEt

x t x eψ
−

Ψ =  satisfies that equation if the eigenfunction ( )xψ  satisfies the 

time-independent Schroedinger equation for a potential ( )V x . 
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<解>： 
 

 
5-17、(a) Write the classical wave equation for a string of density per unit length which 

varies with x. (b) Then separate it into two ordinary differential equations, and 
show that the equation in x is very analogous to the time-independent 
Schroedinger equation. 

 
<解>： 
 

 
5-18、By using an extension of the procedure leading to (5-31), obtain the Schroedinger 

equation for a particle of mass m moving in three diamensions (described by 
rectangular coordinates x,y,z) 

 
<解>： 
 

 
5-19、(a) Separate the Schroedinger equation of Problem 18, for a time-independent 

potential, into a time- independent Schroedinger equation and an equation for the 
time dependence of the wave function. (b) Compare to the corresponding 
one-dimensional equations, (5-37) and (5-38), and explain the similarities and the 
differences. 

 
<解>： 
 

 
5-20、(a) Separate the time-independent Schroedinger equation of Problem 19 into three 

time-independent Schroedinger equations, one in each of the coordinates. (b) 
Compare them with (5-37). (c) Explain clearly what must be assumed about the 
form of the potential energy in order to make the separation possible, and what 
the physical significance of this assumption is. (d) Give an example of a system 
that would have such a potential. 

 
<解>： 
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5-21、Starting with the relativistic expression for the energy, formulate a Schroedinger 
equation for photons, and solve it by separation of variables, assuming 0V = . 

 
<解>：With 0V = , the energy of the photon is E pc= . 
      Replacing the energy E and momentum p by their operators gives 

i i c
t x

∂Ψ ∂Ψ
= −

∂ ∂
. 

      Now set ( , ) ( ) ( )x t x T tψΨ =  and divide the equation by ψ  to get 
1 1dT di i c K
T dt dx

ψ
ψ

= − =  

Where K is independent of x and t. Write K k c=  and the two equations 

directly above become dT ikcT
dt

= −  ⇒ ikctT e−∝  

       d ik
dx
ψ ψ=  ⇒ ikxeψ =  

Hence, for the photon, ( )ik x cte −Ψ ∝ ……## 
 

 

5-22、Consider a particle moving under the influence of the potential ( )V x C x= , 

where C is a constant, which is illustrated in Figure 5-21. (a) Use qualitative 
arguments, very similar to those of Example 5-12, to make a sketch of the first 
eigenfunction and of the tenth eigenfunction for system. (b) Sketch both of the 
corresponding probability density function. (c) Then use the classical mechanics 
to calculate, in the manner of Example 5-6, the probability density function 
predicted by that theory. (d) Plot the classical probability density functions with 
the quantum mechanical probability density functions, and discuss briefly their 
comparison. 

 
Figure 5-21 A potential function considered in Problem 22. 
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<解>： 
 

 
5-23、Consider a particle moving in the potential ( )V x  plotted in figure 5-22. For the 

following ranges of the total energy E, state whether there are any allowed values 
of E and if so, whether they are discretely separated or continuously distributed. 
(a) 0E V< , (b) 0 1V E V< < , (c) 1 2V E V< < , (d) 2 3V E V< < , (e) 3V E< . 

 
Figure 5-22 A potential function considered in Problem 23. 
 
<解>： 
 

 
5-24、Consider a particle moving in the potential ( )V x  illustrated in Figure 5-23, that 

has a rectangular region of depth 0V , and width a, in which the particle can be 
bound. These parameters are related to the mass m of the particle in such a way 

that the lowest allowed energy 1E  is found at an energy about 0

4
V  above the 

“bottom.” Use qualitative arguments to sketch the approximant shape of the 
corresponding eigenfunction 1( )xψ . 

 

Figure 5-23 A potential function considered in problem24. 
 
<解>： 
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5-25、Suppose the bottom of the potential function of Problem 24 is changed by adding 

a bump in the center of height about 0

10
V  and width 

4
a . That is, suppose the 

potential now looks like the illustration of Figure 5-24. Consider qualitatively 
what will happen to the curvature of the eigenfunction in the region of the bump, 
and how this will, in turn, affect the problem of obtaining an acceptable behavior 
of the eigenfunction in the region outside the binding region. From these 
consideration predict, qualitatively, what the bump will do to thevalue of the 
lowest allowed energy 1E . 

 
Figure 5-24 A rectangular bump added to the bottom of the potential of Figure 5-23; for 

Problem 25. 
 
<解>： 1E  will increase 
 

 
5-26、Because the bump in Problem 25 is small, a good approximation to the lowest 

allowed energy of the particle in the presence of the bump can be obtained by 
taking it as the sum of the energy in the absence of the bump plus the expectation 
value of the extra potential energy represented by the bump, taking the Ψ  
corresponding to no bump to calculate the expectation value. Using this point of 
view, predict whether a bump of the same “size”, but located at the edge of the 
bottom as in Figure 5-25, would have a large, smaller, or equal effect on the 
lowest allowed energy of the particle, compared to the effect of a centered bump. 
(Hint : Make a rough sketch of the product of *Ψ Ψ  and the potential energy 
function that describes the centered bump. Then consider qualitatively the effect 
of moving the bump to the edge on the integral of this product.) 
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Figure 5-25 The same rectangular bump as in Figure 5-24, but moved to the edge of the 

potential ; for Problem 26. 
 
<解>：smaller 
 

 
5-27、By substitution into the time-independent Schroedinger equation for the potential 

illustrated in Figure 5-23, show that in the region to the right of the binging 
region the eigenfunction fas the mathematical form 

02 ( )

( )
m V E

x
x Aeψ

−
−

= ,
2
ax > + . 

 
<解>：Schroedinger’s equation is  

      
2

2 2

2 ( ) 0d m E V
dx
ψ ψ+ − =  

      In the region in questin, 0V V constant= = , 0E V< , so that 

      2
02

2 ( ) 0mq V E ψ= − >  

     Hence, qx qxAe Beψ −= + , is the general solution. However, ( ) 0xψ = ∞ = , 
requiring 0B =  

     qxAeψ −=  as the wavefunction…….## 
 

 
5-28、Using the probability density corresponding to the eigenfunction of Problem 27, 

write an expression to estimate the distance D outside the binding region of the 
potential within which there would be an appreciable probability of finding the 
particle. (Hint : Take D to extend to the point at which *Ψ Ψ  is smaller than its 
value at the edge of the binding region by a factor of 1e− . This 1e−  criterion is 
similar to one often used in the study of electrical circuits.) 

 
<解>：Since ψ  is real, the probability density P is * 2 2 2qxP A eψ ψ ψ −= = =  
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      Recalling that x is measured from the center of the binding region, the suggested 

criterion for D gives 
1 12 ( ) 2 ( )2 1 22 2

q a D q a
A e e A e

− + −−=  

                2 1qa qD qae e− − −=  

                1/ 2
0

1
2 2[2 ( )]

D
q m V E

= =
−

……## 

 
 

5-29、The potential illustrated in Figure 5-23 gives a good description of the forces 
acting on an electron moving through a block of metal. The energy difference 

0V E− , for the highest energy electron, is the work function for the metal. 
Typically, 0 5V E eV− . (a) Use this value to estimate the distance D of Problem 
28. (b) Comment on the results of the estimate. 

 
<解>：From Problem 28 

0

1/ 2 31 19 1/ 2
0

0.4
2[2 ( )] 2[2(9.1 10 )(5)(1.6 10 )]

D A
m V E − −= = =

− × ×
 

0.4Å 
 

 
5-30、Consider the eigenfunction illustrated in the top part of Figure 5-26. (a) Which of 

the three potentials illustrated in the bottom part of the figure could lead to such 
an eigenfunction? Give qualitative arguments to justify your answer. (b) The 
eigenfunction shown is not the one corresponding to the lowest allowed energy 
for the potential. Sketch the form of the eigenfunction which does correspond to 
the lowest allowed energy 1E . (c) Indicate on another sketch the range of 
energies where you would expect discretely separated allowed energy states, and 
the range of energies where you would expect the allowed energies to be 
continuously distributed. (d) Sketch the form of the eigenfunction which 
corresponds to the second allowed energy 2E . (e) To which energy level does the 
eigenfunction presented in Figure 5-26 correspond? 
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Figure 5-26 An eigenfunction (top curve) and three possible forms (bottom curves) of 
the potential energy function considered in Problem30. 

 
<解>： 
 

 
5-31、Estimate the lowest energy level for a one-dimensional infinite square well of 

width a containing a cosine bump. That is the potential V is  

0 cos
2 2

inf
2 2

    

x a aV V x
a

a aV inity x or x

π
= − < < +

= < − > +
 

where 
2 2

0 22
V

ma
π

<< ……## 

 
<解>： 
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5-32、Using the first two normalized wave function 1( , )x tΨ  and 2 ( , )x tΨ  for a 
particle moving freely in a region of length a, but strictly confined to that region, 
construct the linear combination 1 1 2 2( , ) ( , ) ( , )x t c x t c x tΨ = Ψ + Ψ . Then derive a 
relation involving the adjustable constants 1c  and 2c  which, when satisfied, 
will ensure that ( , )x tΨ  is also normalized. The normalized 1( , )x tΨ  and 

2 ( , )x tΨ  are obtained in Example 5-10 and Problem 10. 
 
<解>： 
 

 
5-33、(a) Using the normalized “mixed” wave function of Problem32, calculate the 

expectation value of the total energy E  of the particle in terms of the energies 

1E  and 2E  of the two states and the values 1c  and 2c  of the mixing 
parameters. (b) Interpret carefully the meaning of your result. 

 

<解>：(a) The total energy is 
2

2
pE V
m

= + . But 0V =  in the region of motion, so that 

2 2 2

22 2
pE
m m x

∂
= = −

∂
 

Hence, 
2 22

* * * *
1 1 2 2 1 1 2 22

2

( ) ( )
2

a

a

E c c c c dx
m x

+

−

∂
= − Ψ + Ψ Ψ + Ψ

∂∫ . 

But 
2

21
12 ( )

x a
π∂ Ψ

= − Ψ
∂

; 
2

22
22

2( )
x a

π∂ Ψ
= − Ψ

∂
. 

Also, by Problem 5-32, * *
1 2 2 1 0dx dxΨ Ψ = Ψ Ψ =∫ ∫  and therefore 

2
2 * * 2 * *

1 1 1 1 2 2 2 2
2{( ) ( ) }

2
E c c dx c c dx

m a a
π π

= Ψ Ψ + Ψ Ψ∫ ∫ , 

2 2 2 2
* *

1 1 2 22 2

2
2

E c c c c
ma ma
π π

= +  

* *
1 1 1 2 2 2E c c E c c E= +  

      (b) Since * *
1 1 2 2 1c c c c+ = , * * *

2 2 1 2 2 2 1 2 2 2 1(1 ) ( )E c c E c c E E c c E E= − + = + −  

         With *
2 20 1c c≤ ≤ , this means that 1 2E E E≤ ≤ . 

         Hence, if the particle can be found either in level 1 or 2, making transitions 
between them, its average energy, as would be expected, lies between the 
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energies of the two levels……## 
 

 
5-34、If the particle described by the wave function of Problem 32 is a proton moving in 

a nucleus, it will give rise to a charge distribution which oscillates in time at the 
same frequency as the oscillations of its probability density. (a) Evaluate this 

frequency for values of 1E  and 2E  corresponding to a proton mass of 2710− kg 

and a nuclear dimension of 1410− m. (b) Also evaluate the frequency and energy 
of the photon that would be emitted by oscillating charge distribution as the 
proton drops from the excited state to the ground state. (c) In what region of the 
electromagnetic spectrum is such a proton? 

 

<解>：(a) The probability density ∗Ψ Ψ  has a time dependence of 
2 1( )i E E t

e
− −

, and 

therefore the frequency is 2 1E E
h

ν −
= . 

         But, 
2 2 2 34 2

1 2 2 27 14 2 13

(6.626 10 )
2 8 8(1.67 10 )(10 ) (1.602 10 )

hE
ma ma
π − →

− − −

×
= = =

× ×
 

         1 2.051E MeV= ; 2 14 8.204E E MeV= = . 

         Hence, 21
21

8.204 2.051 1.488 10
4.136 10

Hzν −

−
= = ×

×
. 

      (b) The frequency of the photon is the same as in (a). The photon’s energy is 
8.204 2.051 6.153h MeVν = − =  

      (c) Photons with this energy lie in the gamma-ray region of the spectrum……## 
 

 
 


