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Quantum Physics ( &i="P7El) ’E’" )
Robert Eisberg ( Second edition )
CH 06 : Solutions of time-independent Schroedinger equations

6-01 - Show that the step potential eigenfunction, for E <V,, can be converted in form
from the sum of two traveling waves, as in (6-24), to a standing wave, as in

(6-29).
Q} e
%

6-02 - Repeat the step potential calculate of Section 6-4, but with the é%cy’ nitially in
the region x>0 where V(x)=V,, and traveling in the% f decreasing x
towards the point x =0 where the potential steps down alue V(x)=0 in
the region x < 0. Show that the transmission and’raffection coefficients are the

same as those obtained in Section 6-4. @/
<EJ£#> : Assume that ”; /
v,

— Ce—iklx @ﬂ ‘
1> e
. . |H£’L"
v, = Ae ¥ 4 Be'eX @’ % e
V4

A :
Where A=amplitude fm ent wave E{*"F"
B=ampli eflected wave «——o
Czytuﬁ\ of transmitted
) 4
wave </ e
?\ ‘?'n_‘l' O ﬁijl.n._]]_ s

Th is fo wave moving in the
+x-ﬁ§§ﬂcm in region 1.
L S L)

, k=——""—, k, =
7 7
%ga_ » Continuity of wavefunction and derivativeat x=0 imply A+B=C,
f\ K, A+k,B=—kC
These equations may be solved to give the reflection and the transmission

<EJ]4;£> :

amplitudes in terms of the incident amplitude, the results being: B = EZ — El A;
2 + 1
Co 2Kk,
K, +k
The reflection coefficient R and transmission coefficient T now become
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* 2 _
R= B*B :B_Zz(kl k2)2
A'A A Tk K,
- vlC’;C :(/%kl)( 2k, ) = 4k.k, :
V,A'A 7K,k +Kk, (k, +k,)
These expressions for R and T are the same as those obtained if the incident
wave came from the left....... ##

'\‘/ i
6-03 ~ Prove (6-43) stating that the sum of the reflection and transmission coefﬂ}sienéj/
equals one, for the case of a step potential with E >V, . /‘)\@

<EJ]4;£> : 6@}/
W

\l\r
6-04 ~ Prove (6-44) which expresses the reflection and tra@fsion coefficients in terms

of the ratio E : @/
VO
<FE> , @y

IA
6-05 ~ Consider a particle tunneli g%h a rectangular potential barrier. Write the

general solutions prese ;}Section 6-5, which give the form of w in the
&,
t

e
different regions of the‘potential. (a) Then find four relations between the five
arbitrary consta s matching w and dy/dx at the boundaries between

) these relations to evaluate the transmission coefficient T,
bet%A’,
<FE> N4

Mg (6-49). (Hint : First eliminate F and G, leaving relations
AYA g

, and C. Then eliminate B.)
- (V)
A
Vs
96 - Show that the expression of (6-49), for the transmission coefficient in tunneling

through a rectangular potential barrier, reduces to the form quoted in (6-50) if
the exponents are very large.

<if>: If k,a>>1,then €% >>e™" and the transmission coefficient becomes, under
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e2k2a

these circumstances, T ={l+ —————}".
E E
16— (@1-—)
VO VO

Now 0< VE <1 and therefore 165(1—\/5) <4, the upper limit occurring at
0 0 0

E_1
VvV, 2°

2k,a
Hence, if €% >4, & .1 Q
E E /,\
16— (1- ) A
Vo Vo | @
e2k2a @’
Since, in fact, it is assumed that e >>1, ———>> 1)" }/

16E(1——)

g
e

And therefore, under these conditions, T = 16— ;)

@A
77
6-07 ~ Consider a particle passing over a renggular ential barrier. Write the general

solutions, presented in Section 6-5, ive the form of  in the different
regions of the potential. (a) l}aﬂfnd *our relations between the five arbitrary
constants by matching ;@? r at the boundaries between these regions. (b)
X
Ve
Use these relationg t e\'ly te the transmission coefficient T, thereby verifying
(6-51). (Hint : No t the four relations become exactly the same as those

found in jresdpart of Problem 5, if k, is replaced by ik,,. Make this
substitutiBIALE-49) to obtain directly (6-51).)
<PJ;’¢£>

o

'Aa) Evaluate the transmission coefficient for an electron of total energy 2eV

%O incident upon a rectangular potential barrier of height 4eV and thickness

10™°m, using (6-49) and then using (6-50). Repect the evaluation for a barrier
thickness of (b) 9x10°m and (c) 10°m.

<iE> : (a) 0.62
(b) 1.07x10™°
(c) 2.1x10°
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6-09 ~ A proton and a deuteron (a particle with the same charge as a proton, but twice the
mass) attempt to penetrate a rectangular potential barrier of height 10MeV and
thickness 10™“m . Both particle have total energies of 3MeV . (a) Use
qualitative arguments to predict which particle has the highest probability of
succeeding. (b) Evaluate quantitatively the probability of success for bo
particles.

2
<##> : (a) The opacity of a barrier is proportional to 2mV, 2° and therefore/%

mass particle (proton) has the higher probability of getting thr

(b) With V, =10MeV , E=3MeV, a=10"m, Mollo%'y
E. E \Nl\

16— (1-—)=3.36.
i X

The required masses are m, =1.673x10Z my ~2m, . For the proton

k,a=5.803 and, using the appro>7% for
T, = 3.36e %% =3,06x10°5
z?’
Since m, = 2m,asn ﬁg ~/2x5.803=8.207. Hence, for the

deuteron, T, = ‘2% N =25x10"...... HH#
W

Y\

o,

6-10 ~ A fugjo reac{o\n important in solar energy production (see Question 16) involves
capture\otr a proton by a carbon nucleus, which has six times the charge of a

nd a radius of r'=2x10""m. (a) Estimate the Coulomb potential V
- ienced by the proton if it is at the nuclear surface. (b) The proton is incident
/é% gupon the nucleus because of its thermal motion. Its total energy cannot

e 3 A

realistically be assumed to be much higher than 10kT, where k is Boltzmann’s
constant (see Chapter 1) and where T is the internal temperature of the sun of
about 10'°K . Estimate this total energy, and compare it with the height of
Coulomb barrier. (c) Calculate the probability that the proton can penetrate a
rectangular barrier potential of height V extending from r’ to r”, the point at

which the Coulomb barrier potential drops to VE (d) IS the penetration through

BAE /BT ARy
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the actual Coulomb barrier potential greater or less than through the rectangular
barrier potential of part (c)?

. . 1 gQ 9 (6)(1)(1.6X10719)2
<@V Are, 1’ (9x10°) 2x107"

6.912x107%°J

= o = 4.32MeV
1.6x10°J / MeV
(b) E =10kT = (10)(1.38x10%)(10") =1.38x107%J Q
=8.625x10"°MeV =0.002V, KJ\

/|
(c) Numerically, a=2r'—r'=2x10"m; ‘;@}/@
also, 16£(1—£)=0.032; kzh@ Wy
YN

a=y0.
0 0 _Q’
_ 2
T={+ (2.484-0.403) 11 =0.0073 %
0.032
(d) The actual barrier can be considered as f barriers, each of constant

height but the heights decreasing yith r; heriée V, —E diminishes with r
and the probability of penetratior,%

constant height V, ...... ##5-%_‘ ", '

ter than for an equal width barrier of

4

W
% n
E

o v I !

-Q(..

)/jfj» \%&i Appendix S ﬁ:;t © (10a) 4.32MeV (10b) 2x107°V, (10c)0.0073
ol 4

w)\
6-11 ~ Verify by substitution that the standing wave general solution, (6-62), satisfies the

time- independent Schroedinger equation, (6-2), for the finite square well
potential in the region inside the well.

<EJZ4;£> :

BSH/Bu @) rEk ¥
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6-12 ~ Verify by substitution that the exponential general solutions, (6-63) and (6-64),
satisfy the time- independent Schroedinger equation (6-13) for the finite square
well potential in the regions outside the well.

<EJZLL> :
i

A
L
6-13 ~ (a) From qualitative arguments, make a sketch of the form of a typi%und
standing wave eigenfunction for a finite square well pote (b) s the

amplitude of the oscillation the same in all regions? (c) What’&?s’)l(e behavior
of the amplitude predict about the probabilities of findi rticle in a unit
length of the x axis in various regions? (d) Does th prfﬁ“ ibn agree with what
would be expected from classical mechanics? k

. %,

IR
AN

6-14 ~ Use the qualitative arguments Ien\ 13 to develop a condition on the total
energy of the particle, in an un state of a finite square well potential,
which makes the proba Loffinding it in a unit length of the x axis the same

Fd

inside the well as out 'dey& well. (Hint : What counts is the relation between
the de Broglie v%v th inside the well and the width of the well.)

A N
<EJZLL> : ‘!4%;/
Y

-

6-15 \@(Mal!e a quantitative calculation of the transmission coefficient for an unbound
- ‘(Mr‘icle moving over a finite square well potential. (Hint : Use a trick similar to
Qéx_'r the one indicated in Problem 7.) (b) Find a condition on the total energy of the

7\ particle which makes the transmission coefficient equal to one. (c) Compare

with the condition found in Problem 14, and explain why they are the same. (d)
Give an example of an optical analogue to this system.

1+ (sin? kza)]_l’ (- E

<EJZLL> @1 4x(x-1) Vv,
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Nz’ %°
(®) 2ma’
©
©

(a) Consider a one-dimensional square well potential of finite depth V, and
width a. What combination of these parameters determines the “strength” of t
well-i.e., the number of energy levels the wells is capable of binding? |
limit that the strength of the well becomes small, will the number A]\b
levels become 1 or 0? Give convincing justification for your answers.”)

‘I\V
~ An atom of noble gas krypton exerts an attra%otential on an unbound

electron, which has a very abrupt onset. this it is a reasonable
approximation to describe the potential as% ctive square well, of radius
equal to the 4x107°m radius of the Expzf}é1 ents show that an electron of
kinetic energy 0.7eV, in regions outl% atom, can travel through the atom
with essentially no reflection. | no%enon is called the Ramsaure effect. Use
this information in the congitio Problem 14 or 15 to determine the depth of
the square well potentl@ : One de Broglie wavelength just fits into the

width of the WeII h ndt)b -half a de Broglie wavelength?)

Numerica /5\4><10 “m) and K=0.7eV. E=K+V, where

e NA e (662610 )’ — n?(0.5886V)
a 8(9.11x107*)(8x107°)* (1.6 x107*)

“/@»\{’n 1; E, =0.588eV < K, which is not possible.

x{,a

/ Pl o 4
4 —
67’\

6-18

Wer

sing n=2 gives E,=2°E, =2.352eV

V, =E-K =1.65eV
The electron is too energetic for only half its wavelength to fit into the well; this
may be verified by calculating the deBroglie wavelength of an electron with a
kinetic energy over the well of 2.35eV...... H

- Aparticle of total energy 9V, is incident from the —x axis on a potential given

B7E/BuUE ARy
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8V, x<0
by V=0 O<x<a.
v, X>a

Find the probability that the particle will be transmitted on through to the
positive side of the x axis, x>a.

<EJ]4;£> :

52

A A 4
“ )
6-19 ~ Verify by substitution that the standing wave general solution, (6-67), é}a the

time-independent Schroedinger equation (6-2), for the infiq’@’squar well
potential in the region inside the well.

Y

6-20 ~ Two possible eigenfunctions for a particle reely in a region of length a,

but strictly confined to that region, 7 how igure 6-37. When the particle
is in the state corresponding to the e %tlon v, , its total energy is 4eV. (a)

What is its total energy in the%?rre‘spondmg to y, ? (b) What is the lowest

in this system?

possible total energy for the p

o)

Flgure@é’ Two eigenfunctions considered in Problem 20

‘/A
<J
: (@) In the lowest energy state n=1, w has no nodes. Hence y, must
correspond to n=2 , w, to n=3 . Since E, «n’® and
2
E, =4eV ,5:3—2; E, =9%V
E, 2

2

(b) By the same analysis, % = %; E,=1eV ....... ##
|
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6-21 ~ (a) Estimate the zero-point energy for a neutron in a nucleus, by treating it as if it

were in an infinite square well of wide equal to a nuclear diameter of 10™m. (b)
Compare your answer with the electron zero-point energy of Example 6-6.

<i#>: (a) 2.05MeV

(b) )
A\

e A
I 4
6-22~ (a) Solve the classical wave equation governing the vibrations of tchﬁing,
for a string fixed at both its ends. Thereby show that functi cribing the

possible shapes assumed by the string are essent;Q’ e same as the

eigenfunctions for an infinite square well potentjal. Iso show that the
possible frequencies of vibration of the string aré{ntially different from the

frequencies of the wave functions for the p@bl.
<iE> : (a) , /
%
v/
6-23 ~ (a) For a particle in a@,s ow that the fractional difference in the energy
Ve
¢ AE, 2n+1

n? =

between adjacent gig8avalues is

the classical}y kNdN e system.
!«“‘K
/&
<> : (a) )iwrgy in question is E, :nzﬂ’ and therefore the energy of the
‘\@\’ﬁd' cent level is

‘/VJ 2 22

(b) Use this formula to discuss

_ 22
2"""‘"' 2ma E, E, n n
5
“
r (b) In the classical limit n— oo; but lim AE, _ lim 2n+l_ 0

n—o n—oo n2
n

Meaning that the energy levels get so close together as to be
indistinguishable. Hence, quantum effects are not apparent.

6-24 ~ Apply the normalization condition to show that the value of the multiplicative

@) Tk %
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constant for the n=3 eigenfunction of the infinite square well potential, (6-79),

is BS:\E.
a

<##> : The eigenfunctions for odd nare y, =B, cos X
a
For normalization, 1= jwndx B? Icos X v = ZBZ— cos” udu
a nz

. <<‘>
2 _ |2
1=2B}( )(—)_ B2 = Bn_\fn /“\@

For all odd n and, therefore, for n=3. @’

\ A y}/
_ . M)
6-25 ~ Use the eigenfunction of Problem 24 to calculate the gollo expectation values,

and comment on each result : () x (b)E , (€) P, D7

| %
<if> : (a) zero ,
(b) zero Lé{‘
(©) 0.0777a2 %’9’
(d) 88.826(2) ,4)\ %
a L
/\l//

6-26 ~ (a) Use th%_ Y Problem 25 to evaluate the product of the uncertainly in
position t' e uncertainty in momentum, for a particle in the n=3 state of
an igfigite square well potential. (b) Compare with the results of Example 5-10
and%ﬁ(em 13 of Chapter 5, and comment on the relative size of the

‘\/@tgrt inty products for the n=1, n=2, and n=3 state. (c) Find the limits
(&(“Ax and Ap as n approaches infinity.

B
=®> : (a) Using the results of the previous problem,

— a 6 ) 7
AX = 2 _ 1— 1/2 AD = 2 _
X=X V12 ( n27z2) + APENP n”(a)

Hence, for n=3, AXAp

)1’23;zz =2677%.
a

_a g, 6
J12 3t
(b) The other resultsare n=1, AxAp=0.57/%
n=2, AXAp=1.67/%

108 /3143 "‘F;@k%%.i
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The increase with n is due mainly to the uncertainty in p: see Problem 6-25.
(c) From (a), the limitsas n—>o are AXx—

2.
V12

6-27 ~ Form the product of the eigenfunction for the n=1 state of an infinite square
well potential times the eigenfunction for n=3 state of that potential. Then
integrate it over all x, and show that the result is equal to zero. In other WordQ -

D
%
&
COSUCOSV = cos(u +v) +cos(u -v) .) Students who have ’W B(oém 36 of

DY

prove that jz//l(x)n//s(x)dx =0. (Hint : Use the relation :

2
Chapter 5 have already proved that the integral over all e n=1
eigenfunction times the n=2 eigenfunction also’egyals zero. It can be proved
that the integral over all x of any two different eigenfunctions of the potential
equals zero. Furtherrmore, this is true for aﬁ%;?iﬁerent eigenfunctions of
any other potential. (If the eigenfuncigggs are ¢ 3 plex, the complex conjugate of
one is taken in the integrand.) This p?(%is called orthogonality.

o,
T

. -
. 2
<> J W, w,dx = 2 cosde :i I {cos%x— cos%x}dx

: _% 'Y,)( 2
. Vm\
I VAVENES I‘N 2u—cosu)du
S /,,

'
Th%@ d being an even function of u....... Hi
\/)\/ ]
- (‘/.\O

’6-28*(A6ﬂly the results of Problem 20 of Chapter 5 to the case of a particle in a
Zéx_'r three-dimensional box. That is, solve the time-independent Schroedinger
7\ equation for a particle moving in a three-dimensional potential that is zero inside
a cubical region of edge length a, and becomes infinitely large outside that
region. Determine the eigenvalues and eigenfunctions for system.

<EJ]4;£> :
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6-29 ~ Airline passengers frequently observe the wingtips of their planes oscillating up
and down with periods of the order of 1 sec and amplitudes of about 0.1m. (a)
Prove that this is definitely not due to the zero-point motion of the wings by
comparing the zero-point energy with the energy obtained from the quoted
values plus an estimated mass for the wings. (b) Calculate the order of
magnitude of the quantum number n of the observed oscillation.

<i#>: (a) Let M =mass of wing. The zero-point energy is %f%

1 1 h AN
E.=(1+>)o==hy=—, i
o =) e=o v =0 ’1\@\
T =period of oscillation. The actual energy of oscillation is @’
2 2 & s
E:%kAZ:%Ma)ZAZ:Z”TMA 'y}/

2
| W)
Thus, the value of M atwhich E=E; is \')‘\
_ hT _ (6.626x107*)(1)
47° N 47°(107)?

This is less than the mass of an electro% E >>E, and the observed
vibration is not the zero-point mcr' .
-

=1.68x10 kg

2712 MA? 272 MA?
————>N=
%g. T? hT

27°(2000)(107)?
As an example, take = ﬁg. n= i =6x
& (6.626x10*)(1)

b

<ﬁ%t> DA Appendix%ﬁ (29b) =10%

!j} n/

~

efore®y£2= nhy =

(b) Clearly then, n>>1 andt
4

I ' d
6-30 ~ Thege rinﬁ%rce constant C for the vibrations of the interatomic spacing of a
typi omic molecule is about 10° joule/m?. Use this value to estimate the
‘\/@(gp int energy of the molecular vibrations. The mass of the molecule is
- VW 10%kg .
A \ ’

>

’4@ e’
N | 1. 1. Cu,
i#> : The zero-point energy is E, :Eﬁw:?ﬂﬁ)

3
Therefore, E, = %(1_055X10-34)(4 1101026 )2(1.6x107%9)
A X

E, =0.051eV ...... H

HRE s CRAEY
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<EJZL£> :

6-32

% S

IS8 3 iR B CHOG

+ (a) Estimate the difference in energy between the ground state and first excited

state of the vibrating molecule considered in Problem 30. (b) From this estimate
determine the energy of the photon emitted by the vibrations in the charge
distribution when the system makes a transition between the first excited state
and the ground state. (c) Determine also the frequency of the photon, and
compare it with the classical oscillation frequency of the system. (d) In what
range of the electromagnetic spectrum is it?

(a) Using E, =0.051eV, the level spacing will be /,\
N
AE = A(n+%)/§a): %o =0.102eV = 2E,. @

(b) The energy E of the proton = AE =0.102eV .

(c) For the proton, E =z, %

But E=AE=70 = o,=0 %
Where o =classical oscillation freque%,

E_ (0.102)(1L6x10™) _
i — Z.
"ThT 6.626x10” 5’%‘

(d) Photons of this frequency ‘nfrared spectrum,
A=12,000nm....... #i

I rd
~ A pendulum, c% of a weight of 1kg at the end of a light 1m rod, is
oscnlatlng%_ X\‘d\ plitude of 0.1m. Evaluate the following quantities : (a)

Frequenc?‘i (scnlatlon (b) energy of oscillation, (c) approximate value of
guartugn number for oscillation, (d) separation in energy between adjacent
allo ergies, (e) separation in distance between adjacent bumps in the
@Qha Ility density function near the equilibrium point.

\\/3

@ o \f ,/ =3.13rad/s = v—2 =0.498Hz .

(b) E=1ka’- 1”‘9

A* = E=0.049J.
2 2 L

(c) Since n>>1, n=t - O.OAEO =1.5x10%.
hv  (6.626x107*)(0.498)
(d) Since An=1, AE =hy=3.3x10"*J.

(e) A polynomial of degree n has n nodes; hence,

138 /3143 "‘F;@k%%.i
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the distance between “bumps”=distance adjacent
2A 201

nodes=—= -
n 15x10

<ﬁ5‘5>:§%’¢ Appendix S Féfijz’l(SZa) 0.5Hz (32b) 0.049 joule (32c) 1.5x10% (32d)
3.3x10* joule (32e) 1.3x10*m
<.

~/
6-33 ~ Devise a simple argument verifying that the exponent in the d%ealléj/
exponential, which governs the behavior of simple harmonic/‘)\b tor

eigenfunctions in the classically excluded region, is proportion@’ x>, (Hint :
Take the finite square well eigenfunctions of (6-63) and (6- M treat the

quantity (V, —E) as if it increased with increasing x in pr to x*.)

<EJZLL> : %

%/

6-34 ~ Verify the eigenfunction and eigenvall%ne n=2 state of a simple harmonic
oscillator by direct substitutiq‘%@;?he‘ime-independent Schroedinger equation,

as in Example 6-7.
38
<EJ]4;£> : A/y/}/

Wi
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