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Quantum Physics（量子物理）習題 
Robert Eisberg（Second edition） 

CH 06：Solutions of time-independent Schroedinger equations 
 

6-01、Show that the step potential eigenfunction, for 0E V< , can be converted in form 
from the sum of two traveling waves, as in (6-24), to a standing wave, as in 
(6-29). 

 
<解>： 
 

 
6-02、Repeat the step potential calculate of Section 6-4, but with the particle initially in 

the region 0x >  where 0( )V x V= , and traveling in the direction of decreasing x 
towards the point 0x =  where the potential steps down to its value ( ) 0V x =  in 
the region 0x < . Show that the transmission and reflection coefficients are the 
same as those obtained in Section 6-4. 

 
<解>：Assume that  

1
1

ik xCeψ −=  

2 2
2

ik x ik xAe Beψ −= +  

Where A=amplitude of incident wave 
      B=amplitude of reflected wave 

C=amplitude of transmitted 
wave 
There is no wave moving in the 
+x-direction in region I. 

      Also, 
1/ 2

1
(2 )mEk = , 

1/ 2
0

2
{2 ( )}m E Vk −

=  

      Continuity of wavefunction and derivative at 0x =  imply A B C+ = , 

2 2 1k A k B k C− + = −  
      These equations may be solved to give the reflection and the transmission 

amplitudes in terms of the incident amplitude, the results being: 2 1

2 1

k kB A
k k
−

=
+

; 

2

2 1

2kC A
k k

=
+

 

      The reflection coefficient R and transmission coefficient T now become 
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2

21 2
2

1 2

( )k kB B BR
A A A k k

∗

∗

−
= = =

+
 

      21 1 2 1 2
2

2 2 1 2 1 2

2 4( )( )
( )

v C C k k k kT
v A A k k k k k

∗

∗= = =
+ +

 

      These expressions for R and T are the same as those obtained if the incident 
wave came from the left…….## 

 
 

6-03、Prove (6-43) stating that the sum of the reflection and transmission coefficients 
equals one, for the case of a step potential with 0E V> . 

 
<解>： 
 

 
6-04、Prove (6-44) which expresses the reflection and transmission coefficients in terms 

of the ratio 
0

E
V

. 

<解>： 
 

 
6-05、Consider a particle tunneling through a rectangular potential barrier. Write the 

general solutions presented in Section 6-5, which give the form of ψ  in the 
different regions of the potential. (a) Then find four relations between the five 
arbitrary constants by matching ψ  and d dxψ  at the boundaries between 
these regions. (b) Use these relations to evaluate the transmission coefficient T, 
thereby verifying (6-49). (Hint : First eliminate F and G, leaving relations 
between A, B, and C. Then eliminate B.) 

 
<解>： 
 

 
6-06、Show that the expression of (6-49), for the transmission coefficient in tunneling 

through a rectangular potential barrier, reduces to the form quoted in (6-50) if 
the exponents are very large. 

 

<解>：If 2 1k a >> , then 2 2k a k ae e−>>  and the transmission coefficient becomes, under 
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these circumstances, 
22

1

0 0

{1 }
16 (1 )

k aeT E E
V V

−= +
−

. 

      Now 
0

0 1E
V

< <  and therefore 
0 0

16 (1 ) 4E E
V V

− ≤ , the upper limit occurring at 

0

1
2

E
V

= . 

      Hence, if 22 4k ae > , 
22

0 0

1
16 (1 )

k ae
E E
V V

>
−

. 

      Since, in fact, it is assumed that 22 1k ae >> , 
22

0 0

1
16 (1 )

k ae
E E
V V

>>
−

, 

      And therefore, under these conditions, 22

0 0

16 (1 ) k aE ET e
V V

−= − …….## 

 
 

6-07、Consider a particle passing over a rectangular potential barrier. Write the general 
solutions, presented in Section 6-5, which give the form of ψ  in the different 
regions of the potential. (a) Then find four relations between the five arbitrary 

constants by matching ψ  and d
dx
ψ  at the boundaries between these regions. (b) 

Use these relations to evaluate the transmission coefficient T, thereby verifying 
(6-51). (Hint : Note that the four relations become exactly the same as those 
found in the fires part of  Problem 5, if IIk  is replaced by IIIik . Make this 
substitution in (6-49) to obtain directly (6-51).) 

 
<解>： 
 

 
6-08、(a) Evaluate the transmission coefficient for an electron of total energy 2eV  

incident upon a rectangular potential barrier of height 4eV  and thickness 
1010 m− , using (6-49) and then using (6-50). Repect the evaluation for a barrier 

thickness of (b) 99 10 m−×  and (c) 910 m− . 
 
<解>：(a) 0.62 

(b) 561.07 10−×  
(c) 62.1 10−×  
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6-09、A proton and a deuteron (a particle with the same charge as a proton, but twice the 
mass) attempt to penetrate a rectangular potential barrier of height 10MeV  and 
thickness 1410 m− . Both particle have total energies of 3MeV . (a) Use 
qualitative arguments to predict which particle has the highest probability of 
succeeding. (b) Evaluate quantitatively the probability of success for both 
particles. 

<解>：(a) The opacity of a barrier is proportional to 
2

0
2

2mV a  and therefore the lower 

mass particle (proton) has the higher probability of getting through. 

      (b) With 0 10V MeV= , 3E MeV= , 1410a m−= , it follows that 

0 0

16 (1 ) 3.36E E
V V

− = . 

        The required masses are 271.673 10pm kg−= × , 2d pm m≈ . For the proton 

2 5.803k a =  and, using the approximate formula, 

2(5.083) 53.36 3.06 10pT e− −= = × . 

        Since 2d pm m≈ , as noted above, 2 2 5.803 8.207k a × = . Hence, for the 

deuteron, 2(8.207) 73.36 2.5 10dT e− −= = × ……## 

 
 

6-10、A fusion reaction important in solar energy production (see Question 16) involves 
capture of a proton by a carbon nucleus, which has six times the charge of a 
proton and a radius of 152 10r m−′ × . (a) Estimate the Coulomb potential V 
experienced by the proton if it is at the nuclear surface. (b) The proton is incident 
upon the nucleus because of its thermal motion. Its total energy cannot 
realistically be assumed to be much higher than 10kT, where k is Boltzmann’s 
constant (see Chapter 1) and where T is the internal temperature of the sun of 
about 7 010 K . Estimate this total energy, and compare it with the height of 
Coulomb barrier. (c) Calculate the probability that the proton can penetrate a 
rectangular barrier potential of height V extending from r′  to r′′ , the point at 

which the Coulomb barrier potential drops to 
2
V . (d) IS the penetration through 
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the actual Coulomb barrier potential greater or less than through the rectangular 
barrier potential of part (c)? 

 

<解>：(a) 
19 2

9
0 15

0

1 (6)(1)(1.6 10 )(9 10 )
4 2 10

qQV
rπε

−

−

×
= = ×

′ ×
 

13

0 13

6.912 10 4.32
1.6 10 /

JV MeV
J MeV

−

−

×
= =

×
 

      (b) 23 7 1510 (10)(1.38 10 )(10 ) 1.38 10E kT J− −= = × = ×  

3
08.625 10 0.002MeV V−= × =  

      (c) Numerically, 152 2 10a r r m−′ ′= − = × ;  

also, 
0 0

16 (1 ) 0.032E E
V V

− = ; 0
2

2 ( )
0.91

m V E
k a a

−
= =  

2
1(2.484 0.403){1 } 0.0073

0.032
T −−
= + =  

      (d) The actual barrier can be considered as a series of barriers, each of constant 
height but the heights decreasing with r; hence 0V E−  diminishes with r 
and the probability of penetration is greater than for an equal width barrier of 
constant height 0V ……## 

 
 

<註>：課本 Appendix S答案：(10a) 4.32MeV  (10b) 3
02 10 V−×  (10c) 0.0073 

 
 

6-11、Verify by substitution that the standing wave general solution, (6-62), satisfies the 
time- independent Schroedinger equation, (6-2), for the finite square well 
potential in the region inside the well. 

 
<解>： 
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6-12、Verify by substitution that the exponential general solutions, (6-63) and (6-64), 
satisfy the time- independent Schroedinger equation (6-13) for the finite square 
well potential in the regions outside the well. 

 
<解>： 
 

 
6-13、(a) From qualitative arguments, make a sketch of the form of a typical unbound 

standing wave eigenfunction for a finite square well potential. (b) Is the 
amplitude of the oscillation the same in all regions? (c) What does the behavior 
of the amplitude predict about the probabilities of finding the particle in a unit 
length of the x axis in various regions? (d) Does the prediction agree with what 
would be expected from classical mechanics?  

 
<解>： 
 

 
6-14、Use the qualitative arguments of Problem 13 to develop a condition on the total 

energy of the particle, in an unbound state of a finite square well potential, 
which makes the probability of finding it in a unit length of the x axis the same 
inside the well as outside the well. (Hint : What counts is the relation between 
the de Broglie wavelength inside the well and the width of the well.) 

 
<解>： 
 

 
6-15、(a) Make a quantitative calculation of the transmission coefficient for an unbound 

particle moving over a finite square well potential. (Hint : Use a trick similar to 
the one indicated in Problem 7.) (b) Find a condition on the total energy of the 
particle which makes the transmission coefficient equal to one. (c) Compare 
with the condition found in Problem 14, and explain why they are the same. (d) 
Give an example of an optical analogue to this system. 

 

<解>：(a) 
2

121 (sin )[ ]
4 ( 1)

k a
x x

−+
−

, 
0

Ex
V

=  
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(b) 
2 2 2

22
n

ma
π  

(c)  
(d)  

 
6-16、(a) Consider a one-dimensional square well potential of finite depth 0V  and 

width a. What combination of these parameters determines the “strength” of the 
well-i.e., the number of energy levels the wells is capable of binding? In the 
limit that the strength of the well becomes small, will the number of bound 
levels become 1 or 0? Give convincing justification for your answers. 

 
<解>： 
 

 
6-17、An atom of noble gas krypton exerts an attractive potential on an unbound 

electron, which has a very abrupt onset. Because of this it is a reasonable 
approximation to describe the potential as an attractive square well, of radius 
equal to the 104 10 m−×  radius of the atom. Experiments show that an electron of 
kinetic energy 0.7eV, in regions outside the atom, can travel through the atom 
with essentially no reflection. The phenomenon is called the Ramsaure effect. Use 
this information in the conditions of Problem 14 or 15 to determine the depth of 
the square well potential. (Hint : One de Broglie wavelength just fits into the 
width of the well. Why not one-half a de Broglie wavelength?) 

 

<解>：Numerically 102(4 10 )a m−= ×  and 0.7K eV= . 0E K V= +  where  

      
2 2 34 2

2 2
2 31 10 2 19

(6.626 10 ) (0.588 )
8 8(9.11 10 )(8 10 ) (1.6 10 )
n hE n n eV
ma

−

− − −

×
= = =

× × ×
 

      Set 1n = ; 1 0.588E eV K= < , which is not possible. 

      Using 2n =  gives 2
2 12 2.352E E eV= =  

                       0 1.65V E K eV= − =  
      The electron is too energetic for only half its wavelength to fit into the well; this 

may be verified by calculating the deBroglie wavelength of an electron with a 
kinetic energy over the well of 2.35eV……## 

 
 

6-18、A particle of total energy 09V  is incident from the x−  axis on a potential given 
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by 
0

0

8 0
0 0

5

V x
V x a

V x a

<
= < <

>
. 

      Find the probability that the particle will be transmitted on through to the 
positive side of the x axis, x a> . 

 
<解>： 
 

 
6-19、Verify by substitution that the standing wave general solution, (6-67), satisfies the 

time-independent Schroedinger equation (6-2), for the infinite square well 
potential in the region inside the well. 

 
<解>： 
 

 
6-20、Two possible eigenfunctions for a particle moving freely in a region of length a, 

but strictly confined to that region, are shown in Figure 6-37. When the particle 
is in the state corresponding to the eigenfunction Iψ , its total energy is 4eV. (a) 
What is its total energy in the state corresponding to IIψ ? (b) What is the lowest 
possible total energy for the particle in this system? 

 
Figure 6-37 Two eigenfunctions considered in Problem 20 
 
<解>：(a) In the lowest energy state 1n = , ψ  has no nodes. Hence Iψ  must 

correspond to 2n = , IIψ  to 3n = . Since 2
nE n∝  and 

4IE eV= ,
2

2

3
2

II

I

E
E

= ; 9IIE eV= . 

      (b) By the same analysis, 
2

0
2

1
2I

E
E

= ; 0 1E eV= …….## 
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6-21、(a) Estimate the zero-point energy for a neutron in a nucleus, by treating it as if it 
were in an infinite square well of wide equal to a nuclear diameter of 1410 m− . (b) 
Compare your answer with the electron zero-point energy of Example 6-6. 

 
<解>：(a) 2.05MeV  

(b)  
 

 
6-22、(a) Solve the classical wave equation governing the vibrations of a stretched string, 

for a string fixed at both its ends. Thereby show that functions describing the 
possible shapes assumed by the string are essentially the same as the 
eigenfunctions for an infinite square well potential. (b) Also show that the 
possible frequencies of vibration of the string are essentially different from the 
frequencies of the wave functions for the potential. 

 
<解>：(a)  

(b)  
 

 
6-23、(a) For a particle in a box, show that the fractional difference in the energy 

between adjacent eigenvalues is 2

2 1n

n

E n
E n
∆ +

= . (b) Use this formula to discuss 

the classical limit of the system. 
 

<解>：(a) The energy in question is 
2 2

2
22nE n

ma
π

= , and therefore the energy of the 

adjacent level is 

        
2 2

2
1 2( 1)

2nE n
ma
π

+ = + , so that 
2 2

1
2 2

( 1) 2 1n n n

n n

E E E n n n
E E n n

+∆ − + − +
= = = . 

      (b) In the classical limit n →∞ ; but 2

2 1lim lim 0n

n n
n

E n
E n→∞ →∞

∆ +
= =  

         Meaning that the energy levels get so close together as to be 
indistinguishable. Hence, quantum effects are not apparent. 

 
 

6-24、Apply the normalization condition to show that the value of the multiplicative 
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constant for the 3n =  eigenfunction of the infinite square well potential, (6-79), 

is 3
2B
a

= . 

<解>：The eigenfunctions for odd n are cosn n
n xB

a
πψ = . 

      For normalization, 
2 2

2 2 2 2 2

0
2

1 cos 2 cos

a n

n n n
a

n x adx B dx B udu
a n

π

πψ
π

−

= = =∫ ∫ ∫  

      2 21 2 ( )( )
4 2n n

a n aB B
n

π
π

= =  ⇒ 2
nB

n
=  

      For all odd n and, therefore, for 3n = . 
 

 
6-25、Use the eigenfunction of Problem 24 to calculate the following expectation values, 

and comment on each result : (a) x , (b) p , (c) 2x , (d) 2p . 

 
<解>：(a) zero  

(b) zero  
(c) 20.0777a   

(d) 288.826( )
a

 

 
 

6-26、(a) Use the results of Problem 25 to evaluate the product of the uncertainly in 
position times the uncertainty in momentum, for a particle in the 3n =  state of 
an infinite square well potential. (b) Compare with the results of Example 5-10 
and Problem 13 of Chapter 5, and comment on the relative size of the 
uncertainty products for the 1n = , 2n = , and 3n =  state. (c) Find the limits 
of x∆  and p∆  as n approaches infinity. 

 
<解>：(a) Using the results of the previous problem,  

2 1/ 2
2 2

6(1 )
12
ax x

n π
∆ = = − , 2 ( )p p n

a
π∆ = =  

Hence, for 3n = , 1/ 2
2 2

6(1 ) 3 2.67
312

ax p
a

π
π

∆ ∆ = − = . 

      (b) The other results are 1n = , 0.57x p∆ ∆ =  
2n = , 1.67x p∆ ∆ =  
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      The increase with n is due mainly to the uncertainty in p: see Problem 6-25. 

      (c) From (a), the limits as n →∞  are 
12
ax∆ → ; p∆ →∞…….## 

 
 

6-27、Form the product of the eigenfunction for the 1n =  state of an infinite square 
well potential times the eigenfunction for 3n =  state of that potential. Then 
integrate it over all x, and show that the result is equal to zero. In other words, 

prove that 1 3 0( ) ( )x x dxψ ψ
∞

−∞

=∫ . (Hint : Use the relation : 

cos( ) cos( )cos cos
2

u v u vu v + + −
= .) Students who have worked Problem 36 of 

Chapter 5 have already proved that the integral over all x of the 1n =  
eigenfunction times the 2n =  eigenfunction also equals zero. It can be proved 
that the integral over all x of any two different eigenfunctions of the potential 
equals zero. Furtherrmore, this is true for any two different eigenfunctions of 
any other potential. (If the eigenfunctions are complex, the complex conjugate of 
one is taken in the integrand.) This property is called orthogonality. 

 

<解>：
2 2

1 3

2 2

2 3 1 4 2cos cos {cos cos }

a a

a a

x x x xdx dx dx
a a a a a a

π π π πψ ψ
+ +

+∞

−∞ − −

= = −∫ ∫ ∫  

      1 3
1 (cos 2 cos )

2
dx u u du

π

π

ψ ψ
π

+∞

−∞ −

= −∫ ∫  

      The integrand being an even function of u…….## 
 

 
6-28、Apply the results of Problem 20 of Chapter 5 to the case of a particle in a 

three-dimensional box. That is, solve the time-independent Schroedinger 
equation for a particle moving in a three-dimensional potential that is zero inside 
a cubical region of edge length a, and becomes infinitely large outside that 
region. Determine the eigenvalues and eigenfunctions for system. 

 
<解>： 
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6-29、Airline passengers frequently observe the wingtips of their planes oscillating up 
and down with periods of the order of 1 sec and amplitudes of about 0.1m. (a) 
Prove that this is definitely not due to the zero-point motion of the wings by 
comparing the zero-point energy with the energy obtained from the quoted 
values plus an estimated mass for the wings. (b) Calculate the order of 
magnitude of the quantum number n of the observed oscillation. 

 
<解>：(a) Let M mass=  of wing. The zero-point energy is 

0
1 1(1 )
2 2 2

hE h
T

ω ν= + = = , 

         T = period of oscillation. The actual energy of oscillation is 

         
2 2

2 2 2
2

1 1 2
2 2

MAE kA M A
T

πω= = =  

         Thus, the value of M  at which 0E E=  is 
34

33
2 2 2 1 2

(6.626 10 )(1) 1.68 10
4 4 (10 )

hTM kg
Aπ π

−
−

−

×
= = = ×  

         This is less than the mass of an electron. Hence 0E E>>  and the observed 
vibration is not the zero-point motion. 

(b) Clearly then, 1n >>  and therefore 
2 2 2 2

2

2 2MA MAE nh n
T hT

π πν= = → =  

   As an example, take 2000M kg= : 
2 1 2

35
34

2 (2000)(10 ) 6 10
(6.626 10 )(1)

n π −

−= = ×
×

…….## 

 
<註>：課本 Appendix S答案：(29b) 3610  
 

 
6-30、The restoring force constant C for the vibrations of the interatomic spacing of a 

typical diatomic molecule is about 3 210 /joule m . Use this value to estimate the 
zero-point energy of the molecular vibrations. The mass of the molecule is 

264.1 10 kg−× . 
 

<解>：The zero-point energy is 1/ 2
0

1 1 ( )
2 2

CE
m

ω= =  

      Therefore, 
3

34 1/ 2 19 1
0 26

1 10(1.055 10 )( ) (1.6 10 )
2 4.1 10

E − − −
−= × ×

×
 

               0 0.051E eV= ……## 
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6-31、(a) Estimate the difference in energy between the ground state and first excited 
state of the vibrating molecule considered in Problem 30. (b) From this estimate 
determine the energy of the photon emitted by the vibrations in the charge 
distribution when the system makes a transition between the first excited state 
and the ground state. (c) Determine also the frequency of the photon, and 
compare it with the classical oscillation frequency of the system. (d) In what 
range of the electromagnetic spectrum is it? 

 
<解>：(a) Using 0 0.051E eV= , the level spacing will be 

0
1( ) 0.102 2
2

E n eV Eω ω∆ = ∆ + = = = . 

      (b) The energy E  of the proton 0.102E eV= ∆ = . 

     (c) For the proton, phE ω=  

         But E E ω= ∆ =  ⇒ phω ω=  

         Where ω = classical oscillation frequency. Thus,  
19

13
34

(0.102)(1.6 10 ) 2.5 10
6.626 10

E Hz
h

ν
−

−

×
= = = ×

×
. 

     (d) Photons of this frequency are in the infrared spectrum, 
12,000nmλ = …….## 

 
 

6-32、A pendulum, consisting of a weight of 1kg at the end of a light 1m rod, is 
oscillating with an amplitude of 0.1m. Evaluate the following quantities : (a) 
Frequency of oscillation, (b) energy of oscillation, (c) approximate value of 
quantum number for oscillation, (d) separation in energy between adjacent 
allowed energies, (e) separation in distance between adjacent bumps in the 
probability density function near the equilibrium point. 

 

<解>：(a) 9.8 3.13 /
1

g rad s
L

ω = = =  ⇒ 0.498
2

Hzων
π

= = . 

      (b) 2 21 1
2 2

mgE kA A
L

= =  ⇒ 0.049E J= . 

      (c) Since 1n >> , 32
34

0.0490 1.5 10
(6.626 10 )(0.498)

En
hν −= = = ×

×
. 

      (d) Since 1n∆ = , 343.3 10E h Jν −∆ = = × . 
(e) A polynomial of degree n has n nodes; hence, 
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the distance between “bumps”=distance adjacent 

nodes 33
32

2 2(0.1) 1.3 10
1.5 10

A m
n

−= = = ×
×

……## 

 
<註>：課本 Appendix S答案：(32a) 0.5Hz  (32b) 0.049 joule  (32c) 321.5 10×  (32d) 

343.3 10 joule−×  (32e) 331.3 10 m−×  
 

 
6-33、Devise a simple argument verifying that the exponent in the decreasing 

exponential, which governs the behavior of simple harmonic oscillator 
eigenfunctions in the classically excluded region, is proportional to 2x . (Hint : 
Take the finite square well eigenfunctions of (6-63) and (6-64), and treat the 

quantity ( 0V E− ) as if it increased with increasing x in proportion to 2x .) 

 
<解>： 
 

 
6-34、Verify the eigenfunction and eigenvalue for the 2n =  state of a simple harmonic 

oscillator by direct substitution into the time-independent Schroedinger equation, 
as in Example 6-7. 

 
<解>： 
 

 
 


