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Quantum Physics ( &i="P7El) ’E’" )
Robert Eisberg ( Second edition )

CH 07 : One-electron atoms

Using the technique of separation of variable, show that there are solutions to the
three-dimensional Schréedinger equation for a time-independent potential,

it
which can be written W(x,y,z,t)=w(X,y,2)e 7 where w(X,Y,2) @
solution to the time-independent Schrdedinger equation. /\

“l

@

Va4 62‘1’ 6‘1’

The time-dependent equation is —— +V

pendent eq 2o o o)
Let W(x,V,z,t)=w(X Yy, 2)T(t) W
Putting this into the first equation gives Yy

o’y 0° i

——T(t)( ‘” )V (Y. 2w (., T iy (1., z)—
Assumlng that V does not depend on t exp I |d|ng the above by the wave
function yields ———(V2 )+V ] = constant =
There are two equation: V%%%E ~V)y =0
For the space dependen{?&,ﬁ the wave function, and

|Et
[LALI dT y__dt T e
T dt
For the t| t part...... ##
/

Veri??ﬁ(@((p) =e™? s the solution to the equation for ®(p), (7-15).

Hydrogen, deuterium. And singly ionized helium are all examples of one-electron
atoms. The deuterium nucleus has the same charge as the hydrogen nucleus, and
almost exactly twice the mass. The helium nucleus has twice the charge of the
hydrogen nucleus, and almost exactly four times the mass. Make an accurate
prediction of the ratios of the ground state energies of these atoms. (Hint :
Remember the variation in the reduced mass.)
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<EJ]4;£> :

7-04 ~ (a) Evaluate, in electron volts, the energies of the three levels of the hydrogen
atom in the states for n=1,2,3. (b) Then calculate the frequencies in hertz, and
the wavelengths in angstroms, of all the photons that can be emitted by the ato

in transitions between these levels. (c) In what range of the electroma
spectrum are these photons? /‘l\
y

AN
e 0
f Ky
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7-05 ~ Verify by substitution that the ground state eigenfunctio¥i}; w» and the ground
state eigenvalue E,, satisfy the time-independent
hydrogen atom.

4
<FE> ’ ‘/@/y
2 R

PRI
7-06 ~ (a) Extend Example 7-4 to ob‘t%m the uncertainty principle a predication of
the total energy of the /tate of the hydrogen atom. (b) Compare with the
e

energy predicted %2’2)/

N\
N
<EJ]4;£> : Y Yl\
i
7-07~ (a) C)?Bﬁthe locating at which the radial probability density is a maximum for
e

, 1 =1 state of the hydrogen atom. (b) Then calculate the expectation

, of the radial coordinate in this state. (¢) Explain the physical significance of
Zéar_'rthe difference in the answer to (a) to (b). (Hint : See Figure 7-5.)
N\

oedinger equation for the

-

<EJZL£> :(a) 4a,
(b) 5a,

7-08 - (a) Calculate the expectation value V for the potential energy in the ground state
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of the hydrogen atom. (b) Show that in the ground state E =—, where E is the
total energy. (c) Use the relation E=K +V to calculate the expectation value
K of the kinetic energy in the ground state, and show that Kz—%. These
relations are obtained for any state of motion of any quantum mechanical (or
classical) system with a potential in the form V(r) o« —%. They are someti

called the virial theorem.

ZN
P
<EJ]4;£> : @(

.74

_ M)
7-09 ~ (a) Calculate the expectation value V of the potential en&'ﬁ‘l\n the n=2, 1=1

state of the hydrogen atom. (b) Do the same for th , 1=0 state. (c)
Discuss the results of (a) and (b), in connec ith’the“virial theorem of
Problem 8, and explain how they bear on th% f the | degeneracy.

<EJZL£> (@) 2E, %

(b) 2E, z%-%n
K

it is a solution Ok, . (Hint : Ignore terms that become negligible relative to

7-10 ~ Bt substituting intQ th§ on for R(r), (7-17), the form R(r) c« r', show that

othersas‘?p
<ig> 1 R(r) mudl sétisfy Eq. 7-17: d’R 2dR G V)R—I(I+1)—

o/
Z

dr? rdr
dR_, 4. dR

er i ; dz_I(I -Dr~

(Qéﬁstltutmg these into the radial equation gives

%t" 10 -2)r 2*;;_/:{Er ~VrI0 e

Now E is a constant independent of r,and V :K; thus the two terms in {}
r

1-2 |

are proportional to r', r'*.As r approaches zero, r'?>>r', r'*"; hence,

{}— 0, and the equation is satisfied...... #H#
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7-11 ~ Consider the probability of finding the electron in the hydrogen atom somewhere

inside a cone of semiangle 23.5° of the +z axis (“arctic polar region”). (a) If
the electron were equally likely to be found anywhere in space, what would be
the probability of finding the electron in the arctic polar region? (b) Suppose the
atom is in the state n=2, I=1, m, =0; recalculate the probability of finding

the electron in the arctic polar region.

<if>: (a) 4.147% %’Qj"

(b) 11.44% 2\

7-12 ~ (a) Sketch a polar diagram of the directional dependence of theﬁyé}ftron atom
probability density for 1=2, m, =0. (b) At what angle Q’ e angular

probability density have its minimum value? (c) Where do angular
probability density have a value one-fourth its max@{value?

<iE> : (a) %/

F 1

A

\ i\

\, \ '

Yi \
K<

X~ A
A7 / \
‘:,(73’ | |
‘;’{X f
{:@W 4 J;

N /

o

(b) Poc(3cos*$-1)°; hence P, =0 at cos$=+

-

giving $=54.7°, 125.3°,

(c) P.=4(9=0") = %Pmale
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cos"$-1)"=1 = 3cos" HF-1=+1 = H=350.3, ) Y
(3cos’ 9-1)° =1 = 3cos’9-1=+1 = $=353", 90°, 144.7° ... ##

7-13 ~ Consider the hydrogen atom eigenfunction y,,,. What are (a) the total energy in
eV; (b) the expectation value of the radial coordinate in A; (c) the total angular
momentum; (d) the z component of the angular momentum; (e) the uncertainty
in the angular momentum; (f) the uncertainty in the z component of the angul
momentum? {Z,\ -~

<i#>: (a) -0.85eV

2N
(b) 9.524 ’1\‘@\

() 3.46/ @/

(d) 27
(e) zero \'W
(f) zero %\Nl\

7-14 ~ Show that the sum of hydrogen atom probab%;?sities for the n=3 quantum
h

states, analogous to the sum in Exam,tzi& IS
<iE> z%—%ﬂ{ )

A«‘%}/ . . :
7-15 ~ Show that ®(¢) = cos mg;/ nd ®(p)=sinme, are particular solutions to the
equation for @(

<EJ]4;£> : %‘%;

’

erically symmertrical.

7-16° @,&F‘valuate LXOPW21—1 for the hydrogen atom. (b) Why does the result indicate
el \

3 - igenfunct
4(;»7:.4 that ,, , is not an eigenfunction of onp ?

.. o 0 0
<i#>:(a) L =iz(sing—+cotdcosg—
> () Ly, =issing— o)

Wy = fao re , sin@e™"
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8!//21 1
06

oy
=y, ,C0t0; 5;11 —iyy

Therefore, L, v,,, =/(icotdsing+cotdcosg)y,,
L, Va1 = 4 COLO(COS P +isin@)y,, , =/ Cot ey, ,
(b) This result cannot be put into the form L, v, , =Cy,,,, with C

Qa

independent of r,0,¢...... #it /,\

2
(R
7-17 ~ Prove that L2, =1(1+1)%7*y,, . (Hint: Use the dlffer ti ééd lon satisfied
)

by ©,,(0) (7-16).) %
. L. I 1

<i#> : The operator is question is given b L2 = —(sin
¥ P | J Y @ ae( ) sin @ o¢*

By Eq. 7-13 this may be written L2 }Lz(‘{rz / 65 (r;_a_)}
reoor

But 68(28'/’) Op— (rz%l(l 1)R—;—ﬂ(E -V)Rr?}
: (r Zd"’)—la «s%x’ﬁ (E-V)riy

By Eq. 7-17. Sc mer’s equation is V% =i—‘;(\/ -E)y

A
Substituti ﬁ&e last two results into the expression for L gives

}

“\
B
(46 _—4

718 We know that w =e™ is an eigenfunction of the total energy operator e, for

the one-dimensional problem of the zero potential. (a) Show that it is also an

eigenfunction of the linear momentum operator p, , and determine the

—ikx

associated momentum eigenvalue. (b) Repeat for  =e™ . (c) Interpret what

the results of (a) and (b) mean concerning measurements of the linear

o in 6K 4
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momentum. (d) We also know that w =coskx and w =sinkx are

eigenfunctions of the zero potential e . Are they eigenfunctions of p_? (e
op op

Interpret the results of (d).

<EJ]4;£> :

2.

o

£

7-19 ~ All four of the function e™?, e™’, cosmg and sinme ar 1‘ jcular

solutions to the equation for ®(¢), (7-15)(see Problem 15). (a d which are
also eigenfunctions of the operator for the z component of aWomentum

LZDp . (b) Interpret your results. \:W
NN
<EJ]4;£> : -<
/
44

/s
. o V74
7-20 ~ A particle of mass u is fixed at ong.end of a rigid rod of negligible mass and
length R. The other end of the ro s in the x-y plane about a bearing

located at the origin, Whose&V' ir’ the z direction. This two-dimensional
“rigid rotator” is illustrated in e 7-13. (a) Write an expression for the total
energy of the system j of its angular momentum L. (Hint : Set the
constant potential_e rgy, ual to zero ,and then express te kinetic energy in
term of L.) (b) %ucing the appropriate operators into the energy equation,
N

2 12
convert iy )he Schroedinger equation A dCAY = 8‘1’2{),'[)

> ¥/ where

op
is the rotational inertia, or moment of inertia, and W(¢,t) is the wave
ritten in terms of the angular coordinate ¢ and the time t. (Hint :
he angular momentum is entirely in the z direction, L=L, and the

2

fun
Yaigee
PLvs _ _ By
\correspondlng operatoris L, =—-iz—.)

'V or a¢

B7E /R 10H ®) Tk B
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Figure 7-13 The rigid rotator moving in the x-y plane considered in Problem 20’\ \

A
*f Ky

A\,
7-21 ~ By applying the technique of separation of variables,\'ﬁ )the rigid rotator
Schroedinger equation of Problem 20 to obtah-f(a) the time-independent

Schroedinger equation —— (D((D) %nd (b) the equation for the time

) ——T(t) In these equation E = the

separation constant, and @(@))& ‘P&o,t) , the wave function.

<> Let W(4,t)=D(P)T (t)
Substitute this intq th efy equation of Problem 7-20(b) and divide by ¥ to
2 2 2
obtain — 7T 2o dT . _ﬁ_id‘l;:wid_T:
N7 dt’ 210 dg T dt
) 4
Where E {eparation constant. Thus two equations emerge:

2 d
—E® and
(a) }%Eg an
‘\//V L I =
t

'V

dependence of the wave function

«/,
HO
AN
e
7-22 ~ (a) Solve the equation for the time dependence of the wave function obtained in
Problem 21. (b) Then show that the separation constant E is the total energy.

. . _iEt
<##> : (a) From the preceding problem, %—I:—ET' d—T:—Edt; T=e"”

Vi T
The normalization constant will be incorporated into ¢.

BOR /ALK %ok B
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(b) The solution above represents an oscillation of frequency @ given by
E = Zw . But this the de Broglie-Einstein relation. Hence E is the total
energy...... #HH#

7-23 ~ Show that a particular solution to time-independent Schroedinger equation for the

rigid rotator of Problem 21 is ®(¢p) =e™ where mzﬂ.
7 Q
Q)
d’d 2IE /‘l\
<##> : The equation for @ is, from Problem 7-21(a): +—
dg’

This is analogous to the classical simple harmonic oscillator eqﬁyfp./

2
X
—+w0x=0 Y
T YA
The complex forms of the solution will therefore @<

®=ce™ +ce™, m= % %/
/ Uz'. 7

7-24 ~ (a) Apply the condition of sin edﬂess to the particular solution of Problem
23. (b) Then show that %d values of the total energy E for the

i . ) . #°m?
two-dimensional ua mechanical rigid rotator are E-=
q rﬁ%, P/ g o
\, ) )
|m| =0,12,3,...( are the results of quantum mechanics with those of the

%-
old quant KA ry obtained in Problem 42 of Chapter 4. (d) Explain why the

two-dimensiohal quantum mechanical rigid rotator has no zero-point energy. Also
explai it is not a completely realistic model for a microscope system.

Yo,

<PJ5’#? '\/j
v \
ik

);
4

8 3‘(1\

~
~
7-25 ~ Normalize the functions ®(g) = €™ found in Problem 24.

iEt
<##> : The complete wave function is, from the preceding problems, ¥ = Ne'™e 7

The wavefunction must be normalized at any time t: thus, J' O'Pdg=1

Fommion 6K 4
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<EJZ4;£> :

=23 41288 CHO7

(a) Calculate the expectation value of the angular momentum, L, f@
two-dimensional rigid rotator in a typical quantum state, using the eigen@gct'o S

-,

found in Problem25. (b) Then calculate L* and EZ and interpset widy your

results have to say about the values of L that would be obta@@’a series of
measurements on the system.

Use @ =(27)"%e™; L, izl %
o¢

@) E=Tcp*( |;;—¢)d¢——"§ jeﬂzoén)/@’é jd¢
L=ms z‘z‘%ﬂ{ )

(b) LZ——je-'W( i) dg=mis?

"7\

Also, from @f m?/?

i\
Sinceg%}z,measurements of L, willyield mz exactly...... #H#
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