Quantum Physics（量子物理）習題
 Robert Eisberg（Second edition）

CH 09 ：Multielectron atoms－ground states and x－ray excitations

9－01 ，By going through the procedure indicated in the text，develop the time－independent Schroedinger equation for two noninteracting identical particles in a box，（9－1）．
ANS ：

9－02 • By applying the technique of separation of variables，show that，for a potential of the additive form of（9－2），there are solutions to the two－particle time independent Schroedinger equation，（9－1），in the product form of（9－3）．
ANS ：

9－03 • Exchange the particle labels in the two probability density functions，obtained from the symmetric and antisymmetric eigenfunction of（9－8）and（9－9），and show that neither is affected by the exchange

ANS：The probability densities are

9－04 ，Verify that expanded from of the flyee－particle eigenfunction of Example 9－2 is antisymmetric with respected an exchange of the labels of two particles．
ANS ：

9－05 ，Verify that ex ondedrom of the three－particle eigenfunction of Example 9－2 is identically to to zero if two particle are in the same space and spin quantum state

ANS ：

$9-06 \cdot$ Verify that the $\frac{1}{\sqrt{3!}}$ normalization factor quoted in example 9－2 is correct．
ANS：

9－07，Verify that the expanded from of the three－particle eigenfunction of Example 9－3 is symmetric with respect to an exchange of the labels of two particles．
ANS ：

9－08 ，An α particle contains two protons and two neutrons．Show that if each of its
constituents is antisymmetric then it must be symmetric，as stated in Table 9－1． （Hint ：Consider a pair of α particles，and the effect of exchanging the labels of all the constituents in one with those of all the constituents in the other．）

ANS ：

9－09 ，Write an expression for the expectation value of the energy associated with the Coulomb interaction between the two electrons of a helium atom in its ground state．Use a space eigenfunction for the system composed of product of one－electron atom eigenfunction，each of which describes an electronmovifg independently about the $Z=2$ nucleus．Do not bother to evgleng the expectation value integral，but instead comment on its relation o the energy levels shown in Figure 9－7．

ANS ：

9－10 • Prove that any two different nondegenerate bounce eigenfunction $\psi_{i}(x)$ and $\psi_{j}(x)$ that are solutions to the time－independer Schrodinger equation for the same potential $V(x)$ obey the orthogonality relation $\int_{-\infty}^{\infty} \psi_{j}^{*}(x) \psi_{i}(x) d x=0 \quad i \neq$ intent and $\psi_{j}(x)$ are solutions，and f hen take the complex conjugate of the second one to obtain the equation satisfied by ψ_{j}^{*} ．（ii）Multiply the equation in ψ_{i} by ψ_{j}^{*} ， the equation in Ψ_{j}^{*} by ψ_{i} ，and then subtract．（iii）Integrate，using a relation such 1
25 $\psi_{j}^{*} \frac{d^{2} \psi_{i}}{d x^{2}}-\psi_{i} \frac{d^{2} \psi_{j}^{*}}{d x^{2}}=\frac{d}{d x}\left(\psi_{j}^{*} \frac{d \psi_{i}}{d x}-\psi_{i} \frac{d \psi_{j}^{*}}{d x}\right)$ ．）The proof can be extended to －include degenerate eigenfunction，and also unbound eigen－functions that are properly normalized．Can you see how to do this？
ANS：

9－11 ，（a）By going through the procedure indicated in Section 9－5，develop the time－independent Schroedinger equation for a system of z electrons of an atom moving independently in a set of identical net potentials $V(r)$ ．（b）Then separate it into a set of Z identical time－indenendent Schroedinger equations，one for each electron．（c）Verify that the form of a typical one is as stated in（9－22）．（d）

Compare this form with the time－independent Schroedinger equation for a one－electron atom，（7－12）．
ANS ：

9－12 ，（a）Show that there are N ！terms in the linear combination for an antisymmetric total eigenfunction describing a system of N independent electrons．（Hint ： Consider Example 9－2，and use the mathematical technique of induction．）（b） Evaluate the number of such terms for the case of the argon atom with （Hint ：Use a mathematical table to evaluate N ！，or use Stirling＇s formug found in most mathematical references，to approximate it．）（c）State brady the connection between the results of（b）and the procedure used by for tree to treat the argon atom．

ANS ：

9－13 •（a）Use information from Figure 9－11 to make a sketch，on semilog paper，of the net potential $V(r)$ for the argon atom．Be sure to determine several values for $\frac{r}{a_{0}}$ between 0 and 0.25 ，as this information when used in Problem 18．（b）Also show the energy levels E_{1} and E_{2} ， 1918 estimates from Example 9－5，and energy level E_{3} ，using measured eta from Figure 9－15．
ANS ： equation，（9－27）reads）agreement with the ground state energy shown in Figure 9－6．（b）Copanare Z_{1} with Z ．（c）Is Z_{1} meaningful for an atom with as few electrons astâelam？Explain briefly．

ANS ： 2.4

9－15 65 Figure 9－6 estimate the average distance between the two electrons in a －Kefium atom（a）in the ground state and（b）in the first excited state．Neglect the exchangeenergy．
（a）From Fig．9－6，$\quad E_{\text {coul }}=+30 \mathrm{eV}$

$$
\begin{aligned}
& E_{\text {coul }}=\frac{1}{4 \pi \varepsilon_{0}}=\frac{e^{2}}{r} \\
& 30=\left(9 \times 10^{9}\right) \frac{\left(1.6 \times 10^{-19}\right)^{2}}{r\left(1.6 \times 10^{-19}\right)} \\
& r=0.048 \mathrm{~nm}
\end{aligned}
$$

（b）$E_{\text {cool }}=+9 \mathrm{eV} \rightarrow r=0.16 \mathrm{~nm} \ldots \ldots$ ．．\＃\＃

9－16 ，（a）Use the Z_{n} for the argon atom obtained in Example 9－5 in the one－electron atom equation for the radial coordinate expectation value，to estimate the radii of the $n=1,2$ ，and 3 shells of the atom．（b）Compare the results with Figure 9－10．

ANS ：

9－17 ，Develop a mathematical argument for the tendency，illustrated in Figure 9－12，of an atomic electron with angular momentum L to avoid the point about which it rotates．Treat the electron semiclassically by assuming that it megs around an orbit in a fixed plane passing through the nucleus．（a）Show that its yotal energy can be written $E=\frac{p_{/ /}^{2}}{2 m}+\left[V(r)+\frac{L^{2}}{2 m r^{2}}\right]=\frac{p_{/ \prime}^{2}}{2 m}+V^{\prime}(r)$ Where $p_{/ /}$is its component of linear momentum parallel to its radial coordinate vector of length r ． （b）Explain why this indicates that its radial motion is as it would be in a one－dimensional system with potential $V^{\prime}(r)$ Then show that $V^{\prime}(r)$ become repulsive for small r because of the dominant behavior of the term $\frac{L^{2}}{2 m r^{2}}$ ， sometimes called the centrifugaticorential．
ANS ：

9－18•（a）Sketch the potentials $x(\sqrt{\prime})$ for the argon atom with $l=0$ and $l=1$ ，defined in Problem 17，by doling the corresponding centrifugal potentials to the $V(r)$ obtained in，R ${ }^{2}$ bled 13．（b）Also sketch the energy level E_{2} ．（b）Show the classical lififits of motion，within which $E_{2} \geq V^{\prime}(r)$ ．（d）Compare these limits with the radial probability densities of Figure 9－10，for $n=2, \quad l=0$ ，and $n=2$ ， $l=1$ ．

19．Write the configurations for the ground states of ${ }^{28} \mathrm{Ni},{ }^{29} \mathrm{Cu},{ }^{30} \mathrm{Zn},{ }^{31} \mathrm{Ga}$ ． ANS：

9－20 • Write the configurations for the ground states of all the lanthanides，making as much use as possible of ditto marks．
ANS ：

9－21，Recent work in nuclear physics has led to the prediction that nuclei of atomic
number $Z=110$ might be sufficiently stable to allow some of the element $Z=110$ to have survived from the time the elements were created．（a）Predict a likely configuration for this element．（b）Make a prediction of the chemical properties of the element．（c）Where would be a likely place to start searching for traces of it？

ANS ：

9－22 •（a）From information contained in Figure 9－6 and 9－15，determine the enosg required to remove the remaining electron from the ground state of $\$$ singły ionized helium atom．（b）Compare this energy predicted by thè duantum mechanics of one－electron atoms．

ANS ：

9－23 •（a）Draw a schematic representation of a standard energy fevel diagram for the ${ }^{22} \mathrm{Ti}$ atom，showing the states populated by electrons for a case in which one electron is missing from the K shell．The diagram shotld be comparable to the one in Figure 9－9 in that it should not attempyegive the energies of the levels to an accurate scale，and no distinction should be pade between $L_{I}, L_{I I}$ ，and $L_{\text {III }}$ levels，etc．（b）Do the same for a case finich one electron is missing from the L shell．（c）Draw a schematiferpresentation of an x－ray energy－level diagram showing the energies of the aforin when a hole is in the K or L shell．（d） Compare the utility of the standard and x－ray energy－level diagrams for cases in which a hole is in an jniê shell．（e）Also make such a comparison for cases in which a hole is in gatputer shell．

ANS ：

9－24，The wavelengths of the lines of the K series of ${ }^{74} \mathrm{~W}$ are（ignoring fine structure）：for $K_{\alpha}, \lambda=0.210 \AA$ ；for $K_{\beta}, \lambda=0.184 \AA$ ；for $K_{\gamma}, \lambda=0.179 \AA$ ．The
－wavelength corresponding to the K absorption edge is $\lambda=0.178 \AA$ ．Use this information to construct an x－ray energy－level diagram for ${ }^{74} \mathrm{~W}$ ．
ANS：

9－25 •（a）Make a rough estimate of the minimum accelerating voltage required for an x－ray tube with a ${ }^{26} \mathrm{Fe}$ anode to emit a L_{α} line of its spectrum．（Hint ：As in Example 9－5，$Z_{2} \simeq Z-10$ ．）（b）Also estimate the wavelength of the L_{α} photon． ANS ：870V

9－26 •（a）Use Moseley’s data of Figure 9－18 to determine the values of the constants C and a in is empirical formula，（9－31）．（b）Compare these values with those of （9－30），which was derived from the results of the Hartree theory．
ANS：（a） $8.65 \times 10^{6} \mathrm{~m}^{-1}, 1.7$

9－27 aIt is suspected that the cobalt is very poorly mixed with the iron in a block of alloy To see regions of high cobalt concentration，an x－ray is taken of the block（a） Predict the energies of the K absorption edges of its constituents．（g）Then determine an x－ray photon energy that would give good contrast Th That is， determine an energy of the photon for which the probability of \＆ossorption by a cobalt atom would be very different from the probability of absorption by an iron atom．
ANS：（a）Co：8．50keV，Fe：7．83keV
（b） 8.50 keV

9－28，The Lyman－alpha lifetime in hydrogen is about $10^{- \text {sec }}$ ．From this，find the lifetime for the K_{α} x－ray transition in lead． 1 ；For the inner electron in lead the wavefunctions are hydrogenic with figropriate effective Z ；lifetime $=\frac{1}{R}$ ，see （8－43）．）
ANS ： $2.44 \times 10^{-16} \mathrm{sec}$

Mos

