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Quantum Physics ( &i="P7El) ’E’" )
Robert Eisberg ( Second edition )
CH 11 : Quantum statistics

11-01 - The equilibrium state is one of maximum entropy S in thermodynatics and one of

ANS :

11-02 -

maximum probability P in statistics. Assuming then that S is a function of P,
show that we should expect S =kInP, where k is a universal constant. Thy
relation is sometimes called the Boltzmann postulate. (Hint : Consider the e@

on S and P of combining two systems.)
"1\@\

The Maxwell distribution can be developed by looking a’ﬁ?m collisions
between two particles. If initially these particles have and ¢,, and

finally &, and ¢,, then g3+g4=(51—5)+(52—5: Iﬂ'% ossible states are

equally probable , the number of collisions per d P is proportional to the

number of particles in each initial state, i. =CP(¢g,)P(¢,), where P(g) is

the probability of a state being pied, 5{dC is a constant. Similarly

P,, =CP(&;)P(s;) . In equili%% collision (1,2) — (3,4) there must
y

&

be a collision (3, 4)4@) 2%5 P,=P,,. (@ Show that P(g)= ek

solves this equatign. b)fy similar reasoning to derive the Fermi distribution.
Here, however, % | states must be filled and the final states must be empty,

and the r@!}o collisions becomes P,, = CP(g)P(&,)[1-P(&;)][1-P(e,)].

1-P(s) e

that the equation P, =P,, can be solved by [ ]=Cek
\//\, o P(&)

¢

/

11-03 -

ANS :

(Wﬁ?ch yields (11-23).

(@) Show thatat T =0, in the Fermi distribution, n(¢)=1 for all energy states
inwhich e<eg. and n(e)=0 for all energy states in which &> &.. (b) Show

that n(g):% for e=¢..
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11-04 ~ Consider the Fermi distribution of (11-24), n(e) = . (@) Show that

ek 41
n(e)=1-n(2s —¢) ; that is, with g -e=06 , show that
n(ee +5) =1-n(g: —0). This proves that the distribution has a symmetry about

n(gF)— . (b) Find n(¢) for 6 =¢—¢. =KT, or 2kT, or 4kT, or 10KT.

Make a rough sketch of n(g) versus & for any T >0. (c) What pe@ -
error is made by approximating the Fermi distribution by the Bﬁ)sz

distribution when %=1,2,4,10? @( g @
ANS : @’}/

11-05 - (a) At what energy is the Bose distribution funct%z “—\% equal to one for

a temperature of 7000°K ? (b) What is the tempefatyfe of the Bose function (for

a =0) with a value of 0.500 at this same e@g
ANS : (a) 0.418eV (b) 4410°K /d%},/

’% EF
1+ekT

11-06 ~ For the Fermi distribution fu@(a) how that In(a)dg =KkT[In

1. (b)

0
Show that this @; to & for T=0 . (c) Show that
25
/\//
jn(g)dg_ n( Wmnz).

ANS : !%.%;/

11-07 - (a)%l-%), show that the Einstein model of a solid gives the specific heat

Yo

(a(% ~3R— ()2 (b) Show that ¢, —»0 as T >0 but that at low
‘;’{A (e kT 1) kT
{1@"—4’

N oo

T, ¢, increasesas e ' rather than as the require T° law.

hv
e kT

11-08 ~ Show that the Debye specific heat result, (11-31), reduces to the classical law of
Dulong and Petit at high temperatures. (Hint : First expand both exponentials
and retain only first order terms. Justify.)
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ANS :

11-09 ~ Imagine a cavity at temperature T. Show that c, , the specific heat of the

327°kV KT 5

enclosed radiation, is given by (—) Explain why c, does not have

an upper limit in this case whereas it does for solids.

ANS : A@

'*‘/ —l
11-10~ In some temperature region graphite can be considered a two-dimensioo@&De&j/
solid, but there are still 3N, modes per mole. (a) @@that

,fxpression

for v, and ® for graphite. (c) Show that at IOV\K’ rgtures the heat

N(v)dv = 2772A
v

capacity is proportional to T2.
3N hvy [3N
ANS : (b) v, =v,|—2, §=—]"0 G
(b) v, =v za k \ za \

/4{_';’/
11-11 ~ N distinguishable atom are distritrttzdiover’ wo energy levels ¢ =0 and

b

kT

&, =¢. (a) Show that the e tl’e system is given by E = Nee . (b)
E 1+e i

% / Nk( )e i

Show that c, . (Hint : This is the Schottky

\"‘ 1+e i
L l\ ( ! .
specific d is observed for paramagnetic solids at low temperature. The
ene levels correspond to the magnetic moments being aligned parallel or
anti?é%ﬂto the magnetic field.) (c) Sketch the heat capacity as a function of
“/@@e ature, being careful to have the correct temperature dependence at high
(éc{o‘low temperatures.

Z@gr

11-12~the variation of density p with altitude y of the gaseous atmosphere of the earth

Po
—g(PO)

can be written as p = p,e , Where p, and P, are sea level density and

pressure, provided the temperature is assumed to be uniform. (a) From the ideal

mgy
gas laws show that this can be put into the form p = p,e X" . (b) Show that this
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has the form of the Boltzmann distribution.
ANS :

11-13 ~ (@) By combining n(e) of (11-21) and N(&) of (11-49) for an ideal gas of

: : . o Nh®
classical  particles,  with A=e“" =

-~ show that
(27mkT)¥ 2V

2N
(kT)3/27Z'1/2
ideal gas. (b) Show that Maxwell’s speed distribution of molecules/i%a 5&

mv2 A
7

which has the form n(v)dv =Cv? #Tdv, where Cisa constant&’ows ifectly

from this. ’S‘y'}/
ANS : \“\
Pl

AN
11-14 ~ Assume that the thermal neutrons emerging fr%nulc?aar reactor have an

energy distribution corresponding to a claggjcal fdeaf*gas at a temperature of
300°K . Calculate the density of neutron? eam of flux 10"/m?®—sec.
(Hint : Consider the average velocityliz%usti its use.)
-
1

n(g)N(e)de = &% ¥ dgis the energy distribution of particles % .

ANS :

A y_4
B IA
11-15 ~ In a certain nucleus th rﬁ%@%c moment is 1.4x107* joule —m?*/weber .
Calculate the fractional ce in population of the nuclear Zeeman levels in
Ve
a magnetic field of Lwebd #/m*, (a) at room temperature and (b) at 4°K .

\/
o U
) 4 . . .

11-16 - EIectron*?%(esonance is much like nuclear magnetic resonance expect that
elecifopic transitions are excited between atomic Zeeman levels. These
expefiments are done at microwave frequencies. If the electromagnetic wave has

‘K@(f;e ency of 32KMHz (K band) calculate the fractional difference in

, - ’b@jlation between two atomic Zeeman levels (a) at room temperature and (b) at
Y
{ébr_,, 4K .

ANS :

11-17 ~ (a) Determine the order of magnitude of the fraction of hydrogen atoms in a state
with  principle quantum number n=2 to those in state n=1 in a gas at
300°K . (b) Take into account the degeneracy of the states corresponding to
quantum numbers n=1 and 2 of atomic hydrogen and determine at what
temperature approximately one atom in a hundred is in a state with n=2.

Bag 1 &837E ?E,ﬁk%%.i
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ANS :

. . n £278
11-18 ~ Consider the relation —==e X" , the Boltzmann factor nondegenerate states for
n2
systems in equilibrium, where ¢, >¢g,. (8) Show that n,=0 at T=0. (b)
Show that n,=n, at T=c or T=-w. (c) Show that n,>n at finite

negative temperature T. (d) Show that n, >0 as T — —0. (e) Hence, explaj

the statements, “Negative absolute temperatures are not colder than ab

zero but hotter than infinite temperature,” and “One approachesdlﬁgg I
temperatures through infinity, not through zero.” (f) Can you suggest @ ein
temperature scale that would avoid temperatures that are negativ@’this sense?

ANS : ,}/

\ A
_ _ M )) .
11-19 - Determine approximately the ratio of the probability of aneous emission to
the probability of stimulated emission at room”tegiperature in (a) the x-ray

region of the electromagnetic spectrum, (b) /is lefegion, (c) the microwave

region.
ANS :
AN
11-20 ~ An atom has two energy Ievgl!q.'_ ith a tfansition wavelength of 5800A. At room
temperature 4x10%° atorgs a the lower state. (a) How many occupy the
upper state, under con Xf thermal equilibrium? (b) Suppose instead that
Ve
7x10% atoms arg pumpéd 4hto the upper state, with 4x10% in the lower state.
How much ener?}ﬁ%les could be released in a single pulse?
ANS : (a) none ( e
4!15‘;1/
O/
11-21~Th rgy I&%Is in a two-level atom are separated by 2.00eV. There are 3x10°
ato In the upper level and 1.7x10° atoms in the ground level. The
V/.)ﬁgff cient of stimulated emission is 3.2x10°m®/W —sec®, and the spectral
i ‘)‘
“ \\(a(hiancy is 4W /m?—Hz. Calculate the stimulated emission rate.

11-22°1f B, =2.7x10"m*/W —sec’® for a particular atom, find the life-time of the 1 to

0 transition at (a) 5500A (visible) and (b) 550A (ultraviloet)?
ANS :
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11-23 ~ Combine (11-49) and (11-47) to obtain (11-50), as follows. Let x=% and

3/2 0 1/2
27V (Z:S]kT) X dxl' Then, with o positive, use the relation
e

obtain N =

a+x
0

(e - t=e " l-e ) =e (e +e“* +..) to obtain (11-50).

ANS : /,<§2>\

*%;9
11-24 ~ Obtain (11-52) as follows. Let x :% and show that @
_ 27KTV (2mKkT)*? % 3’de ~ V(27zka)3’2 o @z
- = ! kT (1+%§/ )/
ANS : \'“
A /

See Example 11-4 and use (11-57).)
ANS :

11-25 ~ Show that the quantum degeneracy in a FW cc rsif KT <<e&.. (Hint:

/ Uz-.
AN
11-26~ Show from the Fermi distribu@;?t inametal at T=0°K the average energy

. 3¢
of an electron is —F. @
3L

d

ANS :
° 27
11-27 ~ Using 23 \'\ ic weight and 9.7x10*kg/m?® as the density of metallic
sodium, . e the Fermi energy on the assumption that each sodium atom
giv e eléctron to the conduction band. (Hint : See Example 11-5.)
ANS : 3. 12&%‘
‘/AI

,‘ - - -
11- 28 ’ﬂ’s\ng 197 as the atomic weight and 19.3x10°kg/m® as the density of gold,
‘,’4 . .
/% e compute the depth of the potential well for free electrons in gold. The work

N\ function is 4.8eV and there is one free electron per atom.
ANS : 10.3eV

11-29 ~ In a one-dimensional system the number of energy states per unit energy is

% /Zm where | is the length of the sample and m is the mass of the electron.
&

There are N electrons in the sample and each state can be occupied by two
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electrons. (a) Determine the Fermi energy at 0°K . (b) Find the average energy
per electron at 0°K .

N?h? &

(b) —-

ANS : (3) ——
(@) 32ml? 3

11-30 ~ Show that about one conduction electron in a thousand in metallic silver has an

energy greater than the Fermi energy at room temperature.
ANS : Q,\/&
A
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