研究 Research

Current Research: Computational Brain Science

目前研究主題:計算腦科學

Our group collaborates with Brain Research Center, National Tsing-Hua University. We apply the principles and methods in physics to the research of neuroimage processing, brain network analysis, and neural dynamics of connectome. Currently we are focusing on the analysis of the connectome of Drosophila (fruit fly), and will study brains of other species.

本研究群與清華大學腦科學中心合作,將物理學之原理與方法,應用於研究大腦連結體之神經影像處理、大腦連結網路分析、神經動力學模擬等領域,主要應用於果蠅大腦連結體之研究,未來並將推廣至其他物種。

研究簡介 Research Introduction Part 1:https://youtu.be/us1ZuH7oh3k

研究簡介 Research Introduction Part 1:https://youtu.be/V3o3zsLxAkc

論文統計 Publication Metrics from Publon (updated: 2021/03/27)

論文列表 Publication List:

  1. An-Lun Chin, Shun-Min Yang, Hsiang-Hsin Chen, Min-Tsang Li, Tsung-Tse Lee, Ying-Jie Chen, Ting-Kuo Lee, Cyril Petibois, Xiaoqing Cai, Chian-Ming Low, Francis Chee Kuan Tan, Alvin Teo, Eng Soon Tok, Edwin B.L. Ong, Yen-Yin Lin, I-Jin Lin, Yi-Chi Tseng, Nan-Yow Chen, Chi-Tin Shih, Jae-Hong Lim, Jun Lim, Jung-Ho Je, Yoshiki Kohmura, Tetsuya Ishikawa, Giorgio Margaritondo, Ann-Shyn Chiang, Yeukuang Hwu, 2020, A Synchrotron X-ray Imaging Strategy to Map Large Animal Brains, Chin. J. Phys. 65, 24-32.
  2. Chi-Tin Shih*, Yen-Jen Lin, Cheng-Te Wang, Ting-Yuan Wang, Chih-Chen Chen, Ta-Shun Su, Chung-Chuan Lo, and Ann-Shyn Chiang, 2020, Diverse Community Structures in the Neuronal-Level Connectome of the Drosophila Brain, Neuroinformatics 18, 267-281.
  3. Ting-Yuan Wang, Nan-Yow Chen*, Guan-Wei Ho, Guo-Tzau Wang, Chi-Tin Shih*, and Ann-Shyn Chiang*, 2018, Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images, Neuroinformatics 16, 207.
  4. Ching-Ling Hsu, Ming-Yu Juang, Pei-Wen Lin, Bo-Rui Liaw, and Chi-Tin Shih, 2017, Temperature-Dependent Morphology and Characteristic Parameters of Annealed Gold Nanolayers, Physica Status Solidi b.
  5. Po-Yen Chang, Ta-Shun Su, Chi-Tin Shih*, and Chung-Chuan Lo*, 2017, The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing, Frontiers in Neuroimformatics, 11, article 26.
  6. Chi-Tin Shih*, Olaf Sporns, Shou-Li Yuan, Ta-Shun Su, Yen-Jen Lin, Chao-Chun Chuang, Ting-Yuan Wang, Chung-Chuang Lo, Ralph J. Greenspan, and Ann-Shyn Chiang*, 2015, Connectomic-Based Analysis of Information Flow in the Drosophila Brain, Current Biology, 25, 1249-58.
  7. Chi-Tin Shih*, Stephen A. Wells, Ching-Ling Hsu, Yun-Yin Cheng, and Rudolf A. Römer*, 2012, The Interplay of Mutations and Electronic Properties in Disease-Related Genes, Scientific Reports 2, 272 (Nature Publishing Group).
  8. Ann-Shyn Chiang*, Chih-Yung Lin, Chao-Chun Chuang, Hsiu-Ming Chang, Chang-Huain Hsieh, Chang-Wei Yeh, Chi-Tin Shih, Jian-Jheng Wu, Guo-Tzau Wang, Yung-Chang Chen, Cheng-Chi Wu, Guan-Yu Chen, Yu-Tai Ching, Ping-Chang Lee, Chih-Yang Lin, Hui-Hao Lin, Chia-Chou Wu, Hao-Wei Hsu, Yun-Ann Huang, Jing-Yi Chen, Hsin-Jung Chiang, Chun-Fang Lu, Ru-Fen Ni, Chao-Yuan Yeh, & Jenn-Kang Hwang, 2011, Three-dimensional reconstruction of brainwide wiring networks in Drosophila at single cell resolution, Current Biology 21, 1.
  9. T. Shih, Y. Y. Cheng, S. Wells, Rudolf A. Römer*, and C. L. Hsu, 2011, Charge Transport in Cancer-Related Genes and Early Carcinogenesis, Computer Physics Communication 182, 36.
  10. T. Shih*, Hsuan-Wen Lin, Ann-Shyn Chiang, 2011, Statistical Analysis and Modeling of the Temperature-Dependent Sleep Behavior of Drosophila, Computer Physics Communication 182, 195.
  11. Chia-Hei Yang, Ching-Ling Hsu, Nan-Yow Chen, and Chi-Tin Shih*, 2011, Temporal Dynamics of Site Percolation in Nanoparticle Assemblies, Computer Physics Communication 182, 71.
  12. Wells, C. T. Shih, and Rudolf A. Römer*, 2009, Modeling Charge Transport in DNA Using Transfer Matrices with Diagonal Terms, Int. J. Mod. Phys. B. 23, 4138.
  13. T. Shih, S. Roche, and Rudolf A. Römer*, 2008, Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53, Phys. Rev. Lett. 100, 018105. (95-2112-M-029-003)
  14. T. Shih*, 2007, Sequence and Energy Dependence of Electric Transport Properties of DNA – A Tight-Binding Model Study, Chin. J. Phys. 45, 703.
  15. T. Shih*, J. J. Wu, C. P. Chou, Y. C. Chen, and T. K. Lee, 2007, Variational Phase Diagram of the Electron-Doped Two-Dimensional Extended t-J Model, Chin. J. Phys. 45, 207.
  16. T. Shih*, 2006, Characteristic length scale of electric transport properties of genomes, Phys. Rev. E 74 (Rapid Comm.), 010903(R).
  17. Y. Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee, T. Xiang, and F. C. Zhang*, 2006, Low-energy physical properties of high-T-c superconducting Cu oxides: A comparison between the resonating valence bond and experiments, Phys. Rev. B 73, 224513.
  18. K. Lee, C. T. Shih, and C. M. Ho*, 2006, Spectra of the high T-c cuprates understood by the variational studies of the t-J-type models, J. Phys. Chem. Solid 67, 150.
  19. T. Shih*, 2006, Electric transport and coding sequences of DNA molecules, Physica Status Solidi (b) 243, 378.
  20. T. Shih*, J. J. Wu, Y. C. Chen, C. Y. Mou, C. P. Chou, R. Eder, and T. K. Lee, 2005, Antiferromagnetism and Superconductivity of the Two-Dimensional Extended t-J Model, Low Temp. Phys. 31, 995.
  21. T. Shih*, Y. C. Chen, and T. K. Lee, 2005, d-wave Pairing of the Two-Dimensional Extended t-J Model, Chin. J. Phys. 43, 543. (NSC92-2112-M-029-010)
  22. C. Chien, Y. C. Chen* and C. T. Shih, 2005, Pairing Correlation of the Two-dimensional Hubbard Model, Chin. J. Phys. 43, 523. (NSC92-2112-M-029-010)
  23. T. Shih*, Y. C. Chen, C. P. Chou, and T. K. Lee, 2004, Absence of the coexistence of superconductivity and antiferromagnetism in the hole-doped twodimensional extended t-J model, Phys. Rev. B 70 (Rapid Comm.), 220502(R). (NSC92-2112-M-029-010)
  24. T. Shih, T.K. Lee*, R. Eder, C. M. Mou, and Y. C. Chen, 2004, Enhancement of Pairing Correlation by t’ in the Two-Dimensional Extended t-J Model, Phys. Rev. Lett. 92, 227002. (NSC92-2112–M -029-010)
  25. K. Lee*, C.T. Shih, Y.C. Chen, and H.Q. Lin, 2002, Comment on "Superconductivity in the Two-dimensional t-J Model", Phys. Rev. Lett. 89, 279702. (NSC90-2112-M -029-006)
  26. T. Shih*, Z.Y. Su, J.F. Gwan, B.L. Hao, C.H. Hsieh, J. L. Lo, and H.C. Lee, 2002, Geometric and Statistical Properties of the Mean-Field HP-Type Models, the LS Model, and Real Protein Sequences, Phys. Rev. E 65, 041923.
  27. T. Shih*, Y.C. Chen, and T.K. Lee, 2001, Phase Separation of the Two-Dimensional t-J Model, Physica C 364-365, 178. (NSC89-2112-M-321-001)
  28. T. Shih*, Y.C. Chen, and T.K. Lee, 2001, Revisit Phase Separation of the Two-Dimensional t-J Model by the Power-Lanczos Method, J. Phys. Chem. Solid. 62, 1797. (NSC89-2112-M-321-001)
  29. T. Shih*, Y.C. Chen, and T.K. Lee, 2000, Pairing Correlation of t-J Type Models Studied by the Power-Lanczos Method, Physica C 341-348, 113. (NSC89-2112-M-321-001)
  30. T. Shih*, Y.C. Chen, and T.K. Lee, 2000, Numerical Study of the Pairing Correlation of the t-J Type Models, Chin. J. Phys. 38, 300. (NSC89-2112-M-001-050)
  31. T. Shih, Z.Y. Su, J.F. Gwan, H.C. Lee*, B.L. Hao, and C.H. Hsieh, 2000, Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures, Phys. Rev. Lett 84, 386.
  32. Tohyama, C. Gazza, C.T. Shih, Y.C. Chen, T.K. Lee, S. Maekawa*, and E. Dagotto, 1999, Stripe Stability in the Extended t-J Model on Planes and Four-Leg Ladders, Phys. Rev. B 59, (Rapid Comm.) 11649. (NSC88-2112-M-029-002)
  33. T. Shih, Y.C. Chen, H.Q. Lin, and T.K. Lee*, 1998, d-Wave Pairing Correlation in the Two-Dimensional t-J Model, Phys. Rev. Lett 81, 1294. (NSC88-2112-M-029-002)
  34. T. Shih, Y.C. Chen, and T.K. Lee*, 1998, Phase separation of the two-dimensional t-J model, Phys. Rev. B 57, 627. (NSC88-2112-M-029-002)
  35. Eder, Y.C. Chen, H.Q. Lin, Y. Ohta, C.T. Shih, and T.K. Lee*, 1997, Systematic scaling in the low-energy excitations of the t-J model in one and two dimensions, Phys. Rev. B 55, 12313.
  36. K. Lee* and C.T. Shih, 1997, Dispersion relation of a single hole in the t-J model, Phys. Rev. B 55, 5983.
  37. C. Chen*, C.T. Shih, and T.K. Lee, 1996, Two-Dimensional Infinite U Hubbard Model Studied by the Power-Lanczos Method, Chin. J. Phys. 34, 388.